Java实战-hadoop patition 分区简介和自定义

 

0 简介:

0) 类比于新生<k,v>入学,不同的学生实现分配好了宿舍,然后进入到不同的宿舍(reduce task)

如果map发送来的数据量太大,意味着这些数据都到这个默认reduce节点执行,没有发挥reduce

并行计算的目的,IO压力也很大。 这就是分区的原因。

a) 默认下分配一个区

b) 分配几个区,则对应几个reduce任务,每个任务在执行的时候都会公用reduce内的代码

c) 自定义分区下 返回的分区数量一定要和 定义的reduce任务相同,具体来说就是:

自定义分区类 extends HashPartitioner,重写getPartition时,返回的分支个数要和

job.setNumReduceTasks(X); 中的X个数相同

如果分区格式和reducetask任务个数不同下,在hadoop不同版本中的运行情况如下:

Java代码 

  1. HashPartitioner.java  key.hashcode() & integer.maxvalue % numreducetasks =  模1恒等于0 返回值恒为0 返回值是分区的标记或者索引 part-00000 part-00001 等等  
  2.   默认的是job.setPartitionerClass(HashPartitioner.class)  自定义分区返回的是索引数字,从0开始依次递增1返回。  
  3.   以 手机号和座机号写在一个文件中为例:  
  4.   如果分区数量 大于/小于 reduce数量时,   
  5.   2个分区 1个reduce --->  hadoop2中依旧能正常执行 只不过不会分区 所有数据都写到一个输出中   hadoop1中会报错  
  6.   2个分区 4个reduce --->  hadoop2中依旧能正常执行 输出结果写到4个区中,第一个分区结果为手机号 第二个为座机号 剩下两个为空文件 所有数据都写到一个输出中  

 

 

d) 需要打包放在hadoop环境内运行,否则在本机运行eg:eclipse环境下,会报错如下:

Java代码 

  1. 14/12/09 14:12:58 WARN mapred.LocalJobRunner: job_local_0001  
  2. java.io.IOException: Illegal partition for 84138413 (1)  

 

 map-shuffle-reduce过程图如下:

 



 

1 代码

结果处理成2个区, 一个是放手机号的 一个是放固话的:

package partition;  
  
import java.io.DataInput;  
import java.io.DataOutput;  
import java.io.IOException;  
import java.net.URI;  
  
import org.apache.hadoop.conf.Configuration;  
import org.apache.hadoop.fs.FileSystem;  
import org.apache.hadoop.fs.Path;  
import org.apache.hadoop.io.LongWritable;  
import org.apache.hadoop.io.Text;  
import org.apache.hadoop.io.Writable;  
import org.apache.hadoop.mapreduce.Job;  
import org.apache.hadoop.mapreduce.Mapper;  
import org.apache.hadoop.mapreduce.Reducer;  
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;  
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;  
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;  
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;  
import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner;  
  
/** 
 *  
 * 实现单词计数功能,指定分区个数(分区下必须通过打包方式来运行) 
 * 1 自定义规约 
 *  1.1  规约定义好处:Combiner发生在Map端,对数据进行规约处理,数据量变小了,传送到reduce端的数据量变小了,传输时间变短,作业的整体时间变短 
 *  1.2 因为不是所有的算法都适合使用Combiner处理,例如求平均数,因此Combiner不作为MR运行的标配 
 *  1.3 Combiner本身已经执行了reduce操作仅仅是处理一个任务所接收的文件中的数据,不能跨map任务执行;只有reduce可以接收多个map任务处理的数据 
 *      这也是Combiner本身已经执行了reduce操作,为什么在Reducer阶段还要执行reduce操作的原因。 
 * 2 自定义分区 
 *   2.1 分区运行必须打成jar运行 
 *   2.2 map分几个区,则reduce有几个任务数量,每个reduce任务将对应一个输出文件 
 *   2.3 分区不是越多越好,要根据业务需求,分区太多,也会造成资源创建,等待等消耗 
 *   2.4 多个reduce任务在运行的好处是提高整体job的运行效率 
 *    
 *   结果处理成2个区, 一个是放手机号的 一个是放固话的 
 *  [root@master ~]# hadoop fs -ls /out 
Warning: $HADOOP_HOME is deprecated. 

Found 4 items 
-rw-r--r--   1 root supergroup          0 2014-08-24 16:02 /out/_SUCCESS 
drwxr-xr-x   - root supergroup          0 2014-08-24 16:02 /out/_logs 
-rw-r--r--   1 root supergroup        556 2014-08-24 16:02 /out/part-r-00000 
-rw-r--r--   1 root supergroup         79 2014-08-24 16:02 /out/part-r-00001 

 */  
public class KpiAppPatition {  
  
  
  
    // 0 定义操作地址  
    static final String FILE_ROOT = "hdfs://master:9000/";  
    static final String INPUT_PATH = "hdfs://master:9000/hello";  
    static final String OUT_PATH = "hdfs://master:9000/out";  
      
    public static void main(String[] args) throws Exception{  
          
        Configuration conf = new Configuration();  
        FileSystem fileSystem = FileSystem.get(new URI(FILE_ROOT),conf);  
        Path outpath = new Path(OUT_PATH);  
        if(fileSystem.exists(outpath)){  
            fileSystem.delete(outpath, true);  
        }  
          
        // 0 定义干活的人  
        Job job = new Job(conf);  
        job.setJarByClass(KpiAppPatition.class);  
        // 1.1 告诉干活的人 输入流位置     读取hdfs中的文件。每一行解析成一个<k,v>。每一个键值对调用一次map函数  
        FileInputFormat.setInputPaths(job, INPUT_PATH);  
        // 指定如何对输入文件进行格式化,把输入文件每一行解析成键值对  
        job.setInputFormatClass(TextInputFormat.class);  
          
        //1.2 指定自定义的map类  
        job.setMapperClass(MyMapper2.class);  
        job.setMapOutputKeyClass(Text.class);  
        job.setMapOutputValueClass(KpiWritable2.class);  
          
        //1.3 分区  
        job.setPartitionerClass(KpiPartitioner.class);  
        job.setNumReduceTasks(2);  
          
        //1.4 TODO 排序、分组    目前按照默认方式执行  
        //1.5 TODO 规约  
          
        //2.2 指定自定义reduce类  
        job.setReducerClass(MyReducer2.class);  
        job.setOutputKeyClass(Text.class);  
        job.setOutputValueClass(LongWritable.class);  
          
        //2.3 指定写出到哪里  
        FileOutputFormat.setOutputPath(job, outpath);  
        job.setOutputFormatClass(TextOutputFormat.class);  
          
        // 让干活的人干活  
        job.waitForCompletion(true);  
          
    }  
}  
  
// 自定义分区写法如 注意返回的值是从0开始依次累加1的int值,不能跳跃  
// 否则报错 说找不到编号为X的  
// 你的reduce有几个,那么就会从0开始以1为累加数字返回对应个数的分区编码 然后  
// 在去你代码里找对应编码  代码中随意返回patition的num 找不到就会报错  
class KpiPartitioner extends HashPartitioner<Text, KpiWritable2>{  
    @Override  
    public int getPartition(Text key, KpiWritable2 value, int numReduceTasks) {  
        System.out.println("KpiPartitioner numReduceTasks is : " + numReduceTasks );  
        return (key.toString().length()==11)?0:1; // key为key2 即 电话号码,这里 如果是手机号(11位)则返回0,否则返回1 这样会生成2个分区,1个存放手机号的 1个存放固话的  
    }  
}  
  
/** 
 * 将 <k1,v1> --->  <k2,v2> 
 * @author zm 
 */  
class MyMapper2 extends Mapper<LongWritable, Text, Text, KpiWritable2>{  
  
    /** 
     * key 表示k1 即 当前行号 
     * value 表示v1 即当前行内容 
     */  
    @Override  
    protected void map(LongWritable k1, Text v1, Context context)  
            throws IOException, InterruptedException {  
        //格式: 1363157990043     13925057413 00-1F-64-E1-E6-9A:CMCC  120.196.100.55  t3.baidu.com    搜索引擎    69  63  11058   48243   200  
        String[] elements = v1.toString().split("\t");  
        String phoneNum = elements[1];  
        KpiWritable2 v2 = new KpiWritable2(elements[6],elements[7],elements[8],elements[9]);  
        Text k2 = new Text(phoneNum);  
        context.write(k2, v2);  
    }  
}  
  
/** 
 * 将 <k2,v2> --->  <k3,v3> 
 * @author zm 
 */  
class MyReducer2 extends Reducer<Text, KpiWritable2,Text, LongWritable>{  
  
    protected void reduce(Text k2, Iterable<KpiWritable2> v2s,  
            org.apache.hadoop.mapreduce.Reducer.Context context)  
            throws IOException, InterruptedException {  
          
        long upPackNum = 0L;  
        long downPackNum = 0L;  
        long upPayLoad = 0L;  
        long downPayLoad = 0L;  
          
        for(KpiWritable2 kpiWritable1 : v2s){  
            upPackNum = kpiWritable1.upPackNum;  
            downPackNum = kpiWritable1.downPackNum;  
            upPayLoad = kpiWritable1.upPayLoad;  
            downPayLoad = kpiWritable1.downPayLoad;  
        }  
          
        KpiWritable2 v3 = new KpiWritable2(upPackNum+"",downPackNum+"",upPayLoad+"",downPayLoad+"");  
        context.write(k2, v3);  
    }  
      
      
}  
  
  
/** 
 * 自定义类型类,里面封装 上网流量信息 
 * @author zm 
 * 
 */  
class KpiWritable2 implements Writable{  
      
    long upPackNum; // 上传数据包个数  
    long downPackNum;// 下载数据包个数  
    long upPayLoad;// 上传数据  
    long downPayLoad;// 下载数据  
  
    public KpiWritable2(String upPackNum,String downPackNum,String upPayLoad,String downPayLoad){  
        this.upPackNum = Long.parseLong(upPackNum);  
        this.downPackNum = Long.parseLong(downPackNum);  
        this.upPayLoad = Long.parseLong(upPayLoad);  
        this.downPayLoad = Long.parseLong(downPayLoad);  
    }  
      
    public KpiWritable2(){}  
      
    @Override  
    public void write(DataOutput out) throws IOException {  
        // 先写后读  
        out.writeLong(this.upPackNum);  
        out.writeLong(this.downPackNum);  
        out.writeLong(this.upPayLoad);  
        out.writeLong(this.downPayLoad);  
    }  
  
    @Override  
    public void readFields(DataInput in) throws IOException {  
        // 读取的时候, 按照写方法的顺序( 队列方式) 顺序读取  
        this.upPackNum = in.readLong();  
        this.downPackNum = in.readLong();  
        this.upPayLoad = in.readLong();  
        this.downPayLoad = in.readLong();  
    }  
      
    @Override  
    public String toString() {  
        return upPackNum + "\t" + downPackNum + "\t" + upPayLoad + "\t" + downPayLoad;  
    }  
}  

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值