5-4 畅通工程之最低成本建设问题 (30分)

5-4 畅通工程之最低成本建设问题   (30分)

某地区经过对城镇交通状况的调查,得到现有城镇间快速道路的统计数据,并提出“畅通工程”的目标:使整个地区任何两个城镇间都可以实现快速交通(但不一定有直接的快速道路相连,只要互相间接通过快速路可达即可)。现得到城镇道路统计表,表中列出了有可能建设成快速路的若干条道路的成本,求畅通工程需要的最低成本。

输入格式:

输入的第一行给出城镇数目NN (1< N \le 10001<N1000)和候选道路数目M\le 3NM3N;随后的MM行,每行给出3个正整数,分别是该条道路直接连通的两个城镇的编号(从1编号到NN)以及该道路改建的预算成本。

输出格式:

输出畅通工程需要的最低成本。如果输入数据不足以保证畅通,则输出“Impossible”。

输入样例1:

6 15
1 2 5
1 3 3
1 4 7
1 5 4
1 6 2
2 3 4
2 4 6
2 5 2
2 6 6
3 4 6
3 5 1
3 6 1
4 5 10
4 6 8
5 6 3

输出样例1:

12

输入样例2:

5 4
1 2 1
2 3 2
3 1 3
4 5 4

输出样例2:

Impossible

最小生成树问题,函数返回的是边权值通常有类似最小花费问题,套模板


#include<stdio.h>  
#include<algorithm>  
using namespace std;  
int  G[1002][1002];  
int d[1002];  //用来记录顶点与城镇间的最小花费 
bool vis[1003]={false};  //用来做标记 
int inf=0xfffffff;  
int ans,n,q;  
int a() //默认从第一个城镇开始,函数返回最小生成树边权之和 
{  
    d[1]=0;  //第一个城镇到自身的最小花费为0; 
    ans=0;  
    for(int i=1;i<=n;i++)  
    {  
        int u=-1,min=inf;  
        for(int j=1;j<=n;j++)  
        {  
            if(vis[j]==false&&d[j]<min)  
            {  
                u=j;  
                min=d[j];  
            } //用来判断未访问点中 d[]最小的; 
        }  
        if(u==-1)  
        return -1;  //如果u值为-1,则表示两地点间不连通; 
        vis[u]=true;  
        ans+=d[u];  //进行最小边权值相加 
        for(int v=1;v<=n;v++)  
        {  
            if(vis[v]==false&&G[u][v]!=inf&&G[u][v]<d[v])  
            {  
                d[v]=G[u][v];  
            }  //比较目前城市到目标城市的距离和起始点到目标城市的距离 
        }  
    }  
    return ans;  
}  
int main()  
{  
    int u,v,w,x,m;  
    scanf("%d%d",&n,&m);  
        for(int i=0;i<1002;i++)  
    {  
        d[i]=inf;  
        vis[i]=false;  
        for(int j=0;j<1002;j++)  
        {  
             G[i][j]=inf;  
        }  
    } //以上为初始化 
    while(m--)  
    {  
        scanf("%d%d%d",&u,&v,&w);  
        G[u][v]=w;G[v][u]=w;//双向联通  
    }  
  int ans=a();  
  if(ans==-1)  
  printf("Impossible\n");  
  else  
  printf("%d\n",ans);  
  return 0;  
 }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值