5-4 畅通工程之最低成本建设问题 (30分)
某地区经过对城镇交通状况的调查,得到现有城镇间快速道路的统计数据,并提出“畅通工程”的目标:使整个地区任何两个城镇间都可以实现快速交通(但不一定有直接的快速道路相连,只要互相间接通过快速路可达即可)。现得到城镇道路统计表,表中列出了有可能建设成快速路的若干条道路的成本,求畅通工程需要的最低成本。
输入格式:
输入的第一行给出城镇数目N (1<N≤1000)和候选道路数目M≤3N;随后的M行,每行给出3个正整数,分别是该条道路直接连通的两个城镇的编号(从1编号到N)以及该道路改建的预算成本。
输出格式:
输出畅通工程需要的最低成本。如果输入数据不足以保证畅通,则输出“Impossible”。
输入样例1:
6 15
1 2 5
1 3 3
1 4 7
1 5 4
1 6 2
2 3 4
2 4 6
2 5 2
2 6 6
3 4 6
3 5 1
3 6 1
4 5 10
4 6 8
5 6 3
输出样例1:
12
输入样例2:
5 4
1 2 1
2 3 2
3 1 3
4 5 4
输出样例2:
Impossible
最小生成树问题,函数返回的是边权值通常有类似最小花费问题,套模板
#include<stdio.h>
#include<algorithm>
using namespace std;
int G[1002][1002];
int d[1002]; //用来记录顶点与城镇间的最小花费
bool vis[1003]={false}; //用来做标记
int inf=0xfffffff;
int ans,n,q;
int a() //默认从第一个城镇开始,函数返回最小生成树边权之和
{
d[1]=0; //第一个城镇到自身的最小花费为0;
ans=0;
for(int i=1;i<=n;i++)
{
int u=-1,min=inf;
for(int j=1;j<=n;j++)
{
if(vis[j]==false&&d[j]<min)
{
u=j;
min=d[j];
} //用来判断未访问点中 d[]最小的;
}
if(u==-1)
return -1; //如果u值为-1,则表示两地点间不连通;
vis[u]=true;
ans+=d[u]; //进行最小边权值相加
for(int v=1;v<=n;v++)
{
if(vis[v]==false&&G[u][v]!=inf&&G[u][v]<d[v])
{
d[v]=G[u][v];
} //比较目前城市到目标城市的距离和起始点到目标城市的距离
}
}
return ans;
}
int main()
{
int u,v,w,x,m;
scanf("%d%d",&n,&m);
for(int i=0;i<1002;i++)
{
d[i]=inf;
vis[i]=false;
for(int j=0;j<1002;j++)
{
G[i][j]=inf;
}
} //以上为初始化
while(m--)
{
scanf("%d%d%d",&u,&v,&w);
G[u][v]=w;G[v][u]=w;//双向联通
}
int ans=a();
if(ans==-1)
printf("Impossible\n");
else
printf("%d\n",ans);
return 0;
}