[备忘录]线性代数之Matrices and Systems of Equations(下)

『重读以备忘,键录以备远』 共勉

1.4 Matrix Algebra矩阵代数

矩阵的转置

定理1.4.1 一个n \times n矩阵A

1. 若满足A^T=A,   则称A对称的(symmetric)。

2. 若满足A^T=-A,则称A是反对称的(skew symmetric)。

:若 n \times n 矩阵 A 为反对称的,则 A 矩阵必为奇异的

 定理1.4.2 给定任意一个矩阵A,且AA^TAA^T是对称的。

  1. A为方阵,则A+A^T矩阵是对称的。
  2. A为方阵,则A-A^T矩阵式非对称的。 

  [知识拓展]The Matrix Transpose

矩阵运算法则:

1.A+B=B+A6.(\alpha \beta )A= \alpha( \beta A)
2.(A+B)+C=A+(B+C)7.\alpha (AB)=(\alpha A)B=A(\alpha B)
3.(AB)C=A(BC)8.(\alpha +\beta )A= \alpha A +\beta A
4.A(B+C)=AB+AC9.\alpha (A+B)=\alpha A+ \alpha B
5.(A+B)C=AC+BC

矩阵的逆 

定义  若存在一个矩阵 B 使得AB=BA=I,则称n \times n矩阵A非奇异的(nonsigular),或可逆的(invertible),矩阵B成为A乘法逆元(multiplicative inverse),简称为逆元(inverse),记为A^{-1}。       

 一个矩阵仅有一个乘法逆元,若BC,则

B=BI=B(AC)=(BA)C=IC=C

 逆元分类,加法逆元(additive inverse)、乘法逆元。

1.若一个数加另一个数之和为 0,则称两个数互逆,其中一个数称为另一个数的加法逆元。

2.若一个数乘另一个数之积为 1,则称两个数互逆,其中一个数称为另一个数的乘法逆元

[知识拓展]Additive Inverse and Multiplicative Inverse

 定义 若一个n \times n矩阵不存在乘法逆元,则称矩阵为奇异的(singular)

 定理1.4.3 AB为非奇异的n \times n矩阵,则AB也为非奇异的,且(AB)^{-1}=B^{-1}A^-1{}

矩阵转置的运算法则

1.(A\pm B)^T=A^T\pm B^T

2.(\alpha A)^T=\alpha A^T

3.(AB)^T=B^TA^T

4.(A^{-1})^T=(A^T)^{-1}

5.(A^T)^T = A

定理1.4.4 若 A 是可逆的,且标量 \alpha !=0,则 \alpha A 是可逆的,(\alpha A)^{-1}= \frac{1}{\alpha }A^{-1}

1.5 Elementary Matrices 初等矩阵

如果从单位矩阵I 开始,只进行一次初等行运算,得到的矩阵称为初等矩阵(elementary matrix)。初等矩阵类型有三:

类型Ⅰ、第一类型初等矩阵,通过交换矩阵 I 的任意两行实现构建。

类型Ⅱ、第二类型初等矩阵,通过矩阵 I 的某一行乘以一个非零实数实现构建。

类型Ⅲ、第三类型初等矩阵,通过将矩阵 I  某一行的倍数加到另一行来构建。

 • n\times n初等矩阵左乘一个n\times r矩阵A,就是对 A 进行 行运算。

 • n\times n初等矩阵右乘一个m\times n矩阵B,就是对B进行 列运算

定理  E 为一个初等矩阵,则 E 是非奇异的,且 E^{-1} 为与E 同类型的初等矩阵。

 \square 若E 为类型Ⅰ,则E的逆E^{-1}还是E

 \squareE 为类型Ⅱ,由某一行乘以非零数\alpha而得,则E的逆E^{-1}为该行乘以\frac{1}{\alpha }而得。

\squareE类型Ⅲ,由第 i 行的m倍加到第j行而得,则 E的逆E^{-1}可由将第 j 行减去第i行的m倍而得。

 定义 若存在一个有限初等矩阵的序列 E_1,E_2,...,E_k ,使得

B=E_kE_{k-1}...E_1A

         则称A 和 B 是行等价的(row equivalent)

定理A 为n\times n 矩阵,则下列命题是等价的:

(a)A 是非奇异的.

(b)Ax=0 仅有平凡解 0

(c)A 与 I 行等价。

A 是非奇异的, 由上面定理可知A 与 I 行等价,则必有E_1,E_2,...,E_k ,使得

E_k...E_2E_1A=I

等式两边右乘A^{-1},得到:

E_k...E_2E_1I=A^{-1}

由上式可知,一个非奇异矩阵A经过初等行变换转换成II将转换成A^{-1}

因此,将AI组成增广矩阵\begin{bmatrix}\left.\begin{matrix} A \end{matrix}\right|I \end{bmatrix},通过初等变换化为最简式 \begin{bmatrix}\left.\begin{matrix} I \end{matrix}\right|A^{-1} \end{bmatrix},可以求解一个非奇异矩阵A的逆矩阵A^{-1}

推论 当且仅当 A 是非奇异时,n\times n 线性方程组 Ax=b 有唯一解。


一个 n\times n的矩阵 A ,

(1) 当  i\neq j 时,a_{ij}=0 , 则称 A 为对角的(diagonal matrix).

(2) 当  i>j 时,a_{ij}=0,则称 A 为上三角形的(upper triangular)

(3) 当 i<j 时,a_{ij}=0, 则称 A 为下三角形的(lower trianguler)


三角形分解

如果一个n\times n 矩阵 A 可以仅通过行运算Ⅲ(将某一行替换为它和其他行的倍数的和),化简为严格上三角形的,则可将化简过程用矩阵分解表示。

例如:令

A=\begin{bmatrix} 2 & 4 &2 \\ 1& 5 & 2\\ 4& -1& 9 \end{bmatrix}

仅利用行运算Ⅲ,进行化简。先将第二行减去第一行的 \frac{1}{2} 倍,然后将第三行减去第一行的2倍,

\begin{bmatrix} 2 & 4 &2 \\ 1& 5 & 2\\ 4& -1& 9 \end{bmatrix}\rightarrow \begin{bmatrix} 2 & 4 &2 \\ 0& 3 & 1\\ 0& -9& 5 \end{bmatrix}

为明确减去第一行的倍数,令l_{21}=\frac{1}{2},l_{31}=2 ,然后将第三行减去第二行的 -3 倍。

\begin{bmatrix} 2 & 4 &2 \\ 0& 3 & 1\\ 0& -9& 5 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 4 &2 \\ 0& 3 & 1\\ 0& 0& 8 \end{bmatrix}

l_{32}=-3 ,如果称结果矩阵为 U ,并令

L=\begin{bmatrix} 1 & 0&0 \\ l_{21}& 1 & 0\\ l_{31}&l_{32} & 1 \end{bmatrix} \: \: \: \: U= \begin{bmatrix} 2 & 4 &2 \\ 0& 3 & 1\\ 0& 0& 8 \end{bmatrix}

则有,

LU=\begin{bmatrix} 1 & 0&0 \\\frac{1}{2}& 1 & 0\\ 2&-3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 &2 \\ 0& 3 & 1\\ 0& 0& 8 \end{bmatrix}=\begin{bmatrix} 2 & 4 &2 \\ 1& 5 & 2\\ 4& -1& 9 \end{bmatrix}=A

其中,L ( lower缩写 )为对角元素全为 1 的下三角形矩阵,称为单位下三角形矩阵(unit lower triangular). U(upper 缩写)为对角元素全为非零的上三角形矩阵,称为严格上三角形矩阵。

将一个矩阵 A 分解为一个 单位下三角形矩阵 和一个严格上三角形矩阵的乘积的过程。通常称为LU分解(LU factorization),

其中,L=(E_n...E_2E_1)^{-1}=E_1^{-1}E_2^{-1}...E_n^{-1}\, \, \, \,\, \,U=E_n...E_2E_1A


1.5 Partitioned Matrices 分块矩阵

矩阵分块是矩阵乘法基础。矩阵分块,然后进行相应运算,例如:

B=\begin{bmatrix} 2& 1 & 2\\ -1 & 3&1 \\ 3 & 1& 5 \end{bmatrix}

可将矩阵按列划分成列矩阵:

B=(b_1,b_2,b_3)

也可以将矩阵按行划分成行矩阵:

B=\begin{bmatrix} \vec{b_1}\\ \vec{b_2}\\ \vec{b_3} \end{bmatrix}


外积展开

两个矩阵相乘,可以将两个矩阵按行分块,或者按列分块,然后计算。不同的分块方式有不同的结果。

给定Euclidean n-space,\mathbb{R}^n中的两个向量xy ,

\blacksquare  矩阵乘积  x^Ty 为一个前行向量和后列向量的乘积,结果为1\times 1的矩阵,或称为标量。这样的乘积称为 标量积(scalar product)或者内积(inner product).

\blacksquare 矩阵乘积  xy^T 为一个前列向量和后行向量的乘积,结果为n \times n的矩阵,这样的乘积称为外积(outer product)。结果矩阵中,每一行均为y^T的倍数,每一列均为x的倍数(扩展到矩阵相乘时之这个知识点很重要)

将外积的概念从向量扩展到矩阵。假设从一个m \times n 的矩阵 X 和一个k \times n的矩阵 Y 开始。

计算矩阵乘积 XY^T ,假设X按列划分,Y^T按行划分。然后进行分块矩阵乘法。乘积 XY^T可以表示为向量的外积之和。

XY^T=(x_1,x_2,...,x_n)\begin{bmatrix} y^T_1\\ y^T_2\\ ...\\ y^T_n \end{bmatrix}=x_1y^T_1+x_2y^T_2+...+x_ny^T_n

这个表达式称为外积展开式(outer product expansion).在图像处理应用中很重要。

例如:

A=\begin{bmatrix} -1 &3 \\ 2& 1\\ 1& 1 \end{bmatrix}\: \: \: \: \: B=\begin{bmatrix} 2& -1 \\ 1& 2 \\ 3&1 \end{bmatrix}

计算 A^TB,和AB^T.

1.将A^{T}按列、B按行分块:

A^{T}B=\begin{bmatrix} -1&2&1\\3&1&1\end{bmatrix}\begin{bmatrix} 2&-1\\1&2\\3&1\end{bmatrix}=\begin{bmatrix} -1\\ 3 \end{bmatrix}\begin{bmatrix} 2 & -1 \end{bmatrix}+\begin{bmatrix} 2\\ 1 \end{bmatrix}\begin{bmatrix} 1 & 2 \end{bmatrix}+\begin{bmatrix} 1\\ 1 \end{bmatrix}\begin{bmatrix} 3 & 1 \end{bmatrix}

=\begin{bmatrix} -1\\ 3 \end{bmatrix}\begin{bmatrix} 2 & -1 \end{bmatrix}+\begin{bmatrix} 2\\ 1 \end{bmatrix}\begin{bmatrix} 1 & 2 \end{bmatrix}+\begin{bmatrix} 1\\ 1 \end{bmatrix}\begin{bmatrix} 3 & 1 \end{bmatrix}=\begin{bmatrix} 3 &6 \\ 10 & 0 \end{bmatrix}

2.将A按列,B^{T}按行分块:

AB^{T}=\begin{bmatrix} -1 &3 \\ 2&1 \\ 1&1\end{bmatrix}\begin{bmatrix} 2 & 1&3\\ -1&2 &1\end{bmatrix} =\begin{bmatrix} -1\\ 2\\ 1 \end{bmatrix}\begin{bmatrix} 2 & 1 & 3 \end{bmatrix}+\begin{bmatrix} 3\\ 1\\ 1 \end{bmatrix}\begin{bmatrix} -1 & 2 & 1 \end{bmatrix}

=\begin{bmatrix} -2&-1&-3 \\4&2&6\\ 2&1&3 \end{bmatrix}+\begin{bmatrix}-3&6&3\\-1&2&1\\-1&2&1 \end{bmatrix}=\begin{bmatrix}-5&5&0\\-3&4&7\\1&3&4 \end{bmatrix}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值