『重读以备忘,键录以备远』 共勉!
1.4 Matrix Algebra矩阵代数
矩阵的转置
定理1.4.1 一个
矩阵
,
1. 若满足
, 则称
是对称的(symmetric)。
2. 若满足
,则称
是反对称的(skew symmetric)。
注:若
矩阵
为反对称的,则
矩阵必为奇异的。
定理1.4.2 给定任意一个矩阵
,且
和
是对称的。
- 若
为方阵,则
矩阵是对称的。
- 若
为方阵,则
矩阵式非对称的。
[知识拓展]The Matrix Transpose
矩阵运算法则:
矩阵的逆
定义 若存在一个矩阵
使得
,则称
矩阵
为非奇异的(nonsigular),或可逆的(invertible),矩阵
成为
的乘法逆元(multiplicative inverse),简称为逆元(inverse),记为
。
一个矩阵仅有一个乘法逆元,若和
,则
注:逆元分类,加法逆元(additive inverse)、乘法逆元。
1.若一个数加另一个数之和为 ,则称两个数互逆,其中一个数称为另一个数的加法逆元。
2.若一个数乘另一个数之积为 ,则称两个数互逆,其中一个数称为另一个数的乘法逆元
[知识拓展]Additive Inverse and Multiplicative Inverse
定义 若一个
矩阵不存在乘法逆元,则称矩阵为奇异的(singular)
定理1.4.3 若
和
为非奇异的
矩阵,则
也为非奇异的,且
矩阵转置的运算法则:
|
定理1.4.4 若
是可逆的,且标量
,则
是可逆的,
1.5 Elementary Matrices 初等矩阵
如果从单位矩阵 开始,只进行一次初等行运算,得到的矩阵称为初等矩阵(elementary matrix)。初等矩阵类型有三:
类型Ⅰ、第一类型初等矩阵,通过交换矩阵 的任意两行实现构建。
类型Ⅱ、第二类型初等矩阵,通过矩阵 的某一行乘以一个非零实数实现构建。
类型Ⅲ、第三类型初等矩阵,通过将矩阵 某一行的倍数加到另一行来构建。
• 初等矩阵左乘一个
矩阵
,就是对
进行 行运算。
• 初等矩阵右乘一个
矩阵
,就是对
进行 列运算。
定理 若
为一个初等矩阵,则
是非奇异的,且
为与
同类型的初等矩阵。
若
为类型Ⅰ,则
的逆
还是
。
若
为类型Ⅱ,由某一行乘以非零数
而得,则
的逆
为该行乘以
而得。
若
为类型Ⅲ,由第
行的
倍加到第
行而得,则
的逆
可由将第
行减去第
行的
倍而得。
定义 若存在一个有限初等矩阵的序列
,使得
则称
和
是行等价的(row equivalent)
定理 令
为
矩阵,则下列命题是等价的:
(a)
是非奇异的.
(b)
仅有平凡解
(c)
与
行等价。
若 是非奇异的, 由上面定理可知
与
行等价,则必有
,使得
等式两边右乘,得到:
由上式可知,一个非奇异矩阵经过初等行变换转换成
,
将转换成
。
因此,将和
组成增广矩阵
,通过初等变换化为最简式
,可以求解一个非奇异矩阵
的逆矩阵
。
推论 当且仅当
是非奇异时,
线性方程组
有唯一解。
一个 的矩阵
,
(1) 当 时,
, 则称
为对角的(diagonal matrix).
(2) 当 时,
,则称
为上三角形的(upper triangular)
(3) 当 时,
, 则称
为下三角形的(lower trianguler)
三角形分解
如果一个 矩阵
可以仅通过行运算Ⅲ(将某一行替换为它和其他行的倍数的和),化简为严格上三角形的,则可将化简过程用矩阵分解表示。
例如:令
仅利用行运算Ⅲ,进行化简。先将第二行减去第一行的 倍,然后将第三行减去第一行的2倍,
为明确减去第一行的倍数,令 ,然后将第三行减去第二行的
倍。
令 ,如果称结果矩阵为
,并令
则有,
其中, ( lower缩写 )为对角元素全为
的下三角形矩阵,称为单位下三角形矩阵(unit lower triangular).
(upper 缩写)为对角元素全为非零的上三角形矩阵,称为严格上三角形矩阵。
将一个矩阵 分解为一个 单位下三角形矩阵 和一个严格上三角形矩阵的乘积的过程。通常称为
分解(
factorization),
其中,
1.5 Partitioned Matrices 分块矩阵
矩阵分块是矩阵乘法基础。矩阵分块,然后进行相应运算,例如:
可将矩阵按列划分成列矩阵:
也可以将矩阵按行划分成行矩阵:
外积展开
两个矩阵相乘,可以将两个矩阵按行分块,或者按列分块,然后计算。不同的分块方式有不同的结果。
给定Euclidean n-space,中的两个向量
和
,
矩阵乘积
为一个前行向量和后列向量的乘积,结果为
的矩阵,或称为标量。这样的乘积称为 标量积(scalar product)或者内积(inner product).
矩阵乘积
为一个前列向量和后行向量的乘积,结果为
的矩阵,这样的乘积称为外积(outer product)。结果矩阵中,每一行均为
的倍数,每一列均为
的倍数(扩展到矩阵相乘时之这个知识点很重要)。
将外积的概念从向量扩展到矩阵。假设从一个 的矩阵
和一个
的矩阵
开始。
计算矩阵乘积 ,假设将
按列划分,
按行划分。然后进行分块矩阵乘法。乘积
可以表示为向量的外积之和。
这个表达式称为外积展开式(outer product expansion).在图像处理应用中很重要。
例如:
计算 ,和
.
1.将按列、
按行分块:
2.将按列,
按行分块: