线性表的应用

线性表的应用

线性表的合并

  • 问题描述:
    假设利用两个线性表 L a L_a La L b L_b Lb分别表示两个集合 A A A B B B,现要求一个新集合 A = A ∪ B A=A∪B A=AB

L a = ( 7 , 5 , 3 , 11 ) L_a=(7,5,3,11) La=(7,5,3,11) L b = ( 2 , 6 , 5 ) L_b=(2,6,5) Lb=(2,6,5) − > -> > L a = ( 7 , 5 , 3 , 11 , 2 , 6 ) L_a=(7,5,3,11,2,6) La=(7,5,3,11,2,6)

  • 算法步骤
    依次取出 L b L_b Lb中的每个元素,执行以下操作:
    1.在 L b L_b Lb中查找该元素
    2.如果找不到,则将其插入 L a L_a La的最后

  • 伪代码实现

void union(List &La,List &Lb){
    La_len=ListLength(La);//求出La的长度
    Lb_len=ListLength(Lb);//求出Lb的长度
    for(int i=1;i<=Lb_len;i++){//遍历Lb
        GetElem(Lb,i,e);//取出Lb中的元素
        if(!LocateElem(La,e)) ListInsert(&La,++La_len,e);//元素不在La中则插入La
    }
}
  • 时间复杂度: O ( L a _ l e n ) ∗ O ( L b _ l e n ) O(La\_len)*O(Lb\_len) O(La_len)O(Lb_len)
  • 空间复杂度: O ( L a _ l e n ) ∗ O ( L b _ l e n ) O(La\_len)*O(Lb\_len) O(La_len)O(Lb_len)

有序表的合并

  • 问题描述:
    已知线性表 L a L_a La L b L_b Lb中的数据元素按值非递减有序排列,现要求将 L a L_a La L b L_b Lb归并为新的线性表 L c L_c Lc,且 L c L_c Lc中的数据元素仍按值非递减有序排列。

L a = ( 1 , 7 , 8 ) L_a=(1,7,8) La=(1,7,8) L b = ( 2 , 4 , 6 , 8 , 10 , 11 ) L_b=(2,4,6,8,10,11) Lb=(2,4,6,8,10,11) − > -> > L a = ( 1 , 2 , 4 , 6 , 7 , 8 , 8 , 10 , 11 ) L_a=(1,2,4,6,7,8,8,10,11) La=(1,2,4,6,7,8,8,10,11)

  • 算法步骤
    1.创建一个空表 L c L_c Lc
    2.一次从 L a L_a La L b L_b Lb中“摘取”元素值较小的元素插入到 L c L_c Lc表的最后,直至其中一个表变空为止
    3.继续将 L a L_a La L b L_b Lb其中一个表的剩余结点插入在 L c L_c Lc表的最后

顺序表实现

void MergeList_Sq(SqList LA,SqList LB,SqList &LC){
  pa=LA.elem;
  pb=LB.elem;//指针指向第一个元素
  LC.length=LA.length+LB.length;//LC的长度
  LC.elem=new ElemType[LC.length];//为合并后的新表分配一个数组空间
  pc=LC.elem;//指向LC的第一个元素
  pa_last=LA.elem+LA.length-1;//找到最后一个元素,方便知道LA,LB是否已到最后
  pb_last-LB.elem+LB.length-1;
  while(pa<=pa_last&&pb<=pb_last){//两表都是非空
    if(*pa<=*pb)*pc++=*pa++;//谁小就先插入谁
    else *pc++=*pb++;
  }
  while(pa<=pa_last) *pc++=*pa++;//LB为空时
  while(pb<=pb_last) *pc++=*pb++;//LA为空时
}//MergeList_sq
  • 时间复杂度: O ( L i s t L e n g t h ( L a ) + L i s t L e n g t h ( L b ) ) O(ListLength(La)+ListLength(Lb)) O(ListLength(La)+ListLength(Lb))
  • 空间复杂度: O ( L i s t L e n g t h ( L a ) + L i s t L e n g t h ( L b ) ) O(ListLength(La)+ListLength(Lb)) O(ListLength(La)+ListLength(Lb))

链表实现

void MergeList_L(LinkList &La,LinkList &Lb,LinkList &Lc){
  LinkList pa,pb,pc;
  pa=La->next;pb=Lb->next;
  pc=Lc=La;//用La的头结点作为Lc的头结点
  while(pa&&pb){
    if(pa->data<=pb->data) {pc->next=pa;pc=pa;pa=pa->next;}
    else {pc->next=pb;pc=pb;pb=pb->next;}
  }
  pc->next=pa?pa:pb; delete Lb;//插入剩余段,释放Lb
}
  • 时间复杂度: O ( L i s t L e n g t h ( L a ) + L i s t L e n g t h ( L b ) ) O(ListLength(La)+ListLength(Lb)) O(ListLength(La)+ListLength(Lb))
  • 空间复杂度: O ( 1 ) O(1) O(1)

案列(2.1)一元多项式的运算

  • 实现两个多项式加减乘运算

例如:
P a ( x ) = 10 + 5 x − 4 x 2 + 3 x 3 + 2 x 4 P_a(x)=10+5x-4x^2+3x^3+2x^4 Pa(x)=10+5x4x2+3x3+2x4

P b ( x ) = − 3 + 8 x + 4 x 2 − 5 x 4 + 7 x 5 − 2 x 6 P_b(x)=-3+8x+4x^2-5x^4+7x^5-2x^6 Pb(x)=3+8x+4x25x4+7x52x6

加法运算

void add_Sq(List &La,list &Lb){
  for(int i=0;i<max(La.length,Lb.length);i++){
    La.elem[i]+=Lb.elem[i];
  }
}

案例(2.2)稀疏多项式运算

线性表A=((7,0),(3,1),(9,8),(5,17))
线性表B=((8,1),(22,7),(9,8))
注:(a,b):a:系数;b:指数

顺序表实现

  • 算法步骤:
    1.创建一个数组c
    2.分别从头遍历比较a和b的每一项
    指数相同,对应系数相加,若其和不为零,则在c中增加一个新项
    指数相同,则将指数较小的项复制到c中
    3.一个多项式已遍历完毕时,将另一个剩余项依次复制到c中即可

实现问题:c数组空间大小、运算空间复杂度高
解决办法:链式存储

链表实现

链式存储结构创建多项式:
typedef struct PNode{
  float coef;//系数
  int expn;//指数
  struct PNode *next;//指针域
}PNode,*Polynomial;
  • 算法步骤:
    1.创建一个只有头结点的空链表
    2.根据多项式的个数n,循环n次执行以下操作:
    (1).生成一个新节点s
    (2).输入多项式的系数和指数赋给新节点
    s的数据域
    (3).设置一前驱指针pre,用于指向待找到的第一个大于输入项指数的结点的前驱
    (4).指针q初始化,指向首元节点
    (5).循环向下逐个比较链表中当前节点与输入项指数,找到第一个大于输入项指数的结点*q
    (6).将输入项结点*s插入到结点*q之前

  • 代码实现

void CreatePolyn(Polynmial &P,int i){
  P=new PNode;
  p->next=NULL;
  for(int i=1;i<=n;i++){
    s=new PNode;
    cin>>s->coef>>s->expn;
    pre=P;
    q=P->next;
    while(q&&q->expn<s->expn){
      pre=q;q=q->next;
    }
    s->next=q;
    pre->next=s;
  }
}
链式多项式的相加运算
  • 算法步骤
    1.指针p1和p2初始化,分别指向pa和pb的首元节点
    2.p3指向和多项式的当前节点,初值为pa的头结点
    3.当指针p1和p2均未到达表尾时,则循环比较p1和p2所指结点对应的指针值
    (p1->expn与p2->expn),有下列3种情况
    (1)当p1->expn=p2->expn时,则将两个结点中的系数相加
    若和不为零,则修改p1所指结点的系数值,同时删除p2所指结点
    若和为零,则删除p1和p2所指结点
    (2)当p1->expnexpn时,则应摘取p1所指点插入到“和多项式”链表中去
    (3)当p1->expn>2->expn时,则应摘取p2指结点插入到“和多项式”链表中去
    4.将非空多项式的剩余段插入到p3所指结点之后
    5.释放pb的头结点
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Galactus_hao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值