简单剖析B树(B-Tree)与B+树

注意:首先需要说明的一点是:B-树就是B树,没有所谓的B减树

引言

  我们都知道二叉查找树的查找的时间复杂度是O(log N),其查找效率已经足够高了,那为什么还有B树和B+树的出现呢?难道它两的时间复杂度比二叉查找树还小吗?
  答案当然不是,B树和B+树的出现是因为另外一个问题,那就是磁盘IO;众所周知,IO操作的效率很低,那么,当在大量数据存储中,查询时我们不能一下子将所有数据加载到内存中,只能逐一加载磁盘页,每个磁盘页对应树的节点。造成大量磁盘IO操作(最坏情况下为树的高度)。平衡二叉树由于树深度过大而造成磁盘IO读写过于频繁,进而导致效率低下。
  所以,我们为了减少磁盘IO的次数,就你必须降低树的深度,将“瘦高”的树变得“矮胖”。一个基本的想法就是:
  (1)、每个节点存储多个元素
  (2)、摒弃二叉树结构,采用多叉树

  这样就引出来了一个新的查找树结构 ——多路查找树。 根据AVL给我们的启发,一颗平衡多路查找树(B~树)自然可以使得数据的查找效率保证在O(logN)这样的对数级别上。

下面来具体介绍一下B树(Balance Tree),

B树

一个m阶的B树具有如下几个特征:B树中所有结点的孩子结点最大值称为B树的阶,通常用m表示。一个结点有k个孩子时,必有k-1个关键字才能将子树中所有关键字划分为k个子集。

1.根结点至少有两个子女。
2.每个中间节点都包含k-1个元素和k个孩子,其中 ceil(m/2) ≤ k ≤ m
3.每一个叶子节点都包含k-1个元素,其中 ceil(m/2) ≤ k ≤ m
4.所有的叶子结点都位于同一层。
5.每个节点中的元素从小到大排列,节点当中k-1个元素正好是k个孩子包含的元素的值域划分
6.每个结点的结构为:(n,A0,K1,A1,K2,A2,…  ,Kn,An)
    其中,Ki(1≤i≤n)为关键字,且Ki<Ki+1(1≤i≤n-1)。
Ai(0≤i≤n)为指向子树根结点的指针。且Ai所指子树所有结点中的关键字均小于Ki+1。
n为结点中关键字的个数,满足ceil(m/2)-1≤n≤m-1。

示例:三阶B树(实际中节点中元素很多)

评论 27
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值