tensorflow mac 安装教程

tensorflow 最近很火,花了一个小时在自己电脑上安装了一个tensorflow

官方文档上看着挺简单,有几个坑

怕出问题的话用mac的 root 用户安装

根据自己电脑上的 python版本 选择安装2.7或者3

1、安装管理组件  

            sudo easy_install pip (3.8.1 以上)

     保险起见执行一下

          sudo easy_install --upgrade six
          sudo easy_install --upgrade pip

2、 安装开始

      python

       pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.0.1-py2-none-any.whl       

       或者 python3

       pip3 install --upgrade https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.0.1-py3-none-any.whl

3、进入环境测试

python

>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()
>>> print(sess.run(hello))



 4、问题 numpy 升级(低版本包报错)http://blog.csdn.net/shi_weihappy/article/details/50938486

### 回答1: TensorFlow 1.5.0 的安装教程如下: 1. 首先需要安装 Python 环境,推荐使用 Python 3.5 及以上版本。 2. 安装 TensorFlow 的依赖包,运行以下命令: ``` pip install numpy pip install matplotlib pip install pandas ``` 3. 安装 TensorFlow 1.5.0,运行以下命令: ``` pip install tensorflow==1.5.0 ``` 4. 安装完成后,在 Python 中运行以下代码来验证 TensorFlow 是否安装成功: ``` import tensorflow as tf print(tf.__version__) ``` 如果出现“1.5.0”字样,则说明安装成功。 注意:上述指令适用于 windows 和 linux 系统,mac 系统请使用 pip3 代替 pip ### 回答2: TensorFlow 是 Google 推出的一套开源机器学习框架,其设计理念是让开发者能够用更方便、更灵活以及更高效的方式来构建和训练机器学习模型。TensorFlow 可以为研究人员和开发者提供丰富的工具和 API,帮助他们轻松地创建和训练各种深度学习模型。 TensorFlow 可以在多种环境中使用,包括 PCA、CPU、GPU、移动设备和云计算平台等,它具备针对不同计算设备的控制接口,使得人们能够利用多种硬件资源来加速模型训练和推理。 下面是 TensorFlow 1.5.0 安装教程的步骤: 1. 安装 Python TensorFlow 基于 Python 编程语言开发,因此在安装 TensorFlow 之前,必须首先安装 Python。建议使用 Python 3.6.5 及以上版本,因为 TensorFlow 1.5.0 版本对 Python 3.x 的支持更加完善。 2. 安装 TensorFlow 使用 pip 工具安装 TensorFlow,执行下面的命令: pip install tensorflow==1.5.0 3. 测试 TensorFlow 安装是否成功 安装TensorFlow 后,可以运行以下代码来测试其是否可以正常工作: import tensorflow as tf hello = tf.constant('Hello, TensorFlow!') sess = tf.Session() print(sess.run(hello)) 如果控制台输出了 "Hello, TensorFlow!" 字符串,则表明 TensorFlow 安装成功。 4. 设置 GPU 环境(可选) 如果需要使用 NVIDIA 的 GPU 加速 TensorFlow 模型训练,需要安装 CUDA 及对应的 cuDNN SDK,并且在 TensorFlow 中设置 GPU 环境参数。 5. 安装 TensorBoard(可选) TensorBoard 是 TensorFlow 的一个可视化工具,可以帮助用户展示模型的训练过程和性能指标等。可以使用以下命令安装 TensorBoard: pip install tensorboard 6. 尝试 TensorFlow 示例 TensorFlow 官方提供了一些示例程序,可以在 TensorFlow 安装目录下的 examples 目录中找到。可以运行这些示例程序来了解 TensorFlow 的基本使用方法和模型构建思路。 以上就是 TensorFlow 1.5.0 安装教程的详细步骤,希望可以帮助到大家。如果遇到安装问题,建议查看 TensorFlow 的官方文档或咨询开发社区的其他开发者。 ### 回答3: TensorFlow是一种流行的人工智能框架,它能够帮助开发者快速高效地构建和训练机器学习模型。随着TensorFlow新版本的发布,对于初学者来说,TensorFlow 1.5.0是一款非常好的起点。下面我们就来讲解TensorFlow 1.5.0的安装教程。 1. 安装Anaconda TensorFlow需要依赖于某些包和库来进行运行,安装Anaconda是一个不错的选择。使用Anaconda,你可以轻松地管理你的TensorFlow所需的包和库,方便调用。 2. 创建虚拟环境 在Anaconda中创建一个Python虚拟环境,输入以下命令: ``` conda create -n tensorflow python=3.6 ``` 这个命令会创建一个名为“tensorflow”的虚拟环境,并安装Python 3.6作为默认Python版本。命令执行完成后,我们需要激活这个虚拟环境: ``` source activate tensorflow ``` 3. 安装TensorFlowTensorFlow官网上选择符合你条件的版本(Linux或Windows),可以通过pip install命令来在线安装;也可以从whl文件来进行离线安装。假设我们使用的是Linux版,那么可以直接通过以下命令来在线安装TensorFlow: ``` pip install tensorflow==1.5.0 ``` 如果你的系统安装路径下没有预装cuDNN和cuda,则需要下载安装TensorFlow依赖的版本。也可以进入TensorFlow官网下载whl文件到本地再进行安装,比如: ``` pip install tensorflow-1.5.0-cp36-cp36m-linux_x86_64.whl ``` 若有GPU版本,则应该安装GPU版本的TensorFlow安装GPU版时颇为繁琐,需要cuda和cuDNN等依赖,需要更好的硬件支持。 到此,TensorFlow 1.5.0的安装教程就结束了,通过以上三个步骤,你已经成功地安装TensorFlow,并可以利用其强大的功能来构建和训练自己的人工智能项目。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值