数据结构与算法-基础算法篇-排序(归并排序、快速排序)

3. 归并排序、快速排序

1. 分治思想
  1. 分治,顾明思意,就是分而治之,将一个大问题分解成小的子问题来解决,小的子问题解决了,大问题也就解决了。
  2. 分治与递归的区别:分治算法一般都用递归来实现的。分治是一种解决问题的处理思想,递归是一种编程技巧。
2. 归并排序
  1. 算法原理
    先把数组从中间分成前后两部分,然后对前后两部分分别进行排序,再将排序好的两部分合并到一起,这样整个数组就有序了。这就是归并排序的核心思想。如何用递归实现归并排序呢?写递归代码的技巧就是分写得出递推公式,然后找到终止条件,最后将递推公式翻译成递归代码。递推公式怎么写?如下

    递推公式:
    merge_sort(p…r) = merge(merge_sort(p…q), merge_sort(q+1…r))
    终止条件:
    p >= r 不用再继续分解
    
  2. 代码实现

    // 归并排序算法, A是数组,n表示数组大小
    merge_sort(A, n) {
      merge_sort_c(A, 0, n-1)
    }
    // 递归调用函数
    merge_sort_c(A, p, r) {
      // 递归终止条件
      if p >= r  then return
      // 取p到r之间的中间位置q
      q = (p+r) / 2
      // 分治递归
      merge_sort_c(A, p, q)
      merge_sort_c(A, q+1, r)
      // 将A[p...q]和A[q+1...r]合并为A[p...r]
      merge(A[p...r], A[p...q], A[q+1...r])
    }
    
    merge(A[p...r], A[p...q], A[q+1...r]) {
      var i := p,j := q+1,k := 0 // 初始化变量i, j, k
      var tmp := new array[0...r-p] // 申请一个大小跟A[p...r]一样的临时数组
      while i<=q AND j<=r do {
        if A[i] <= A[j] {
          tmp[k++] = A[i++] // i++等于i:=i+1
        } else {
          tmp[k++] = A[j++]
        }
      }
      
      // 判断哪个子数组中有剩余的数据
      var start := i,end := q
      if j<=r then start := j, end:=r
      
      // 将剩余的数据拷贝到临时数组tmp
      while start <= end do {
        tmp[k++] = A[start++]
      }
      
      // 将tmp中的数组拷贝回A[p...r]
      for i:=0 to r-p do {
        A[p+i] = tmp[i]
      }
    }
    
    // 归并入口
    public void merge_sort(int[] A, int n) {
      merge_sort_c(A, 0, n-1)
    }
    // 递归调用函数
    public void merge_sort_c(int[] A, int p, int r) {
      // 递归终止条件
      if (p >= r)  {
          return
      } 
      // 取p到r之间的中间位置q
      q = (p+r) / 2
      // 分治递归
      merge_sort_c(A, p, q)
      merge_sort_c(A, q+1, r)
      // 将A[p...q]和A[q+1...r]合并为A[p...r]
      merge(A, p, q, r)
    }
    
    merge(int[] A,int p, int q, int r) {
      // 初始化变量i, j, k
      int i = p;
      int j = q+1; 
      int k = 0;
      int[] tmp = new int[r-p] // 申请一个大小跟A[p...r]一样的临时数组
      while (i<=q && j<=r) {
        if (A[i] <= A[j]) {
          tmp[k++] = A[i++] // i++等于i:=i+1
        } else {
          tmp[k++] = A[j++]
        }
      }
      
      // 判断哪个子数组中有剩余的数据
      int start = i;
      int end = q
      if (j<=r) {
          start = j;
          end = r
      } 
     
      // 将剩余的数据拷贝到临时数组tmp
      while (start <= end) {
        tmp[k++] = A[start++]
      }
      
      // 将tmp中的数组拷贝回A[p...r]
      for (i=0; i< r-p; i++) {
        A[p+i] = tmp[i]
      }
    }
    
  3. 性能分析

    1. 算法稳定性:
      归并排序稳不稳定关键要看merge()函数,也就是两个子数组合并成一个有序数组的那部分代码。在合并的过程中,如果 A[p…q] 和 A[q+1…r] 之间有值相同的元素,那我们就可以像伪代码中那样,先把 A[p…q] 中的元素放入tmp数组,这样 就保证了值相同的元素,在合并前后的先后顺序不变。所以,归并排序是一种稳定排序算法。

    2. 时间复杂度:
      分析归并排序的时间复杂度就是分析递归代码的时间复杂度

    3. 如何分析递归代码的时间复杂度?
      递归的适用场景是一个问题a可以分解为多个子问题b、c,那求解问题a就可以分解为求解问题b、c。问题b、c解决之后,我们再把b、c的结果合并成a的结果。若定义求解问题a的时间是T(a),则求解问题b、c的时间分别是T(b)和T©,那就可以得到这样的递推公式:T(a) = T(b) + T© + K,其中K等于将两个子问题b、c的结果合并成问题a的结果所消耗的时间。这里有一个重要的结论:不仅递归求解的问题可以写成递推公式,递归代码的时间复杂度也可以写成递推公式。套用这个公式,那么归并排序的时间复杂度就可以表示为:

        T(1) = C; n=1 时,只需要常量级的执行时间,所以表示为 C。
        T(n) = 2*T(n/2) + n; n>1,其中n就是merge()函数合并两个子数组的的时间复杂度O(n)*
        T(n) = 2*T(n/2) + n
         = 2*(2*T(n/4) + n/2) + n = 4*T(n/4) + 2*n
         = 4*(2*T(n/8) + n/4) + 2*n = 8*T(n/8) + 3*n
         = 8*(2*T(n/16) + n/8) + 3*n = 16*T(n/16) + 4*n
         ......
         = 2^k * T(n/2^k) + k * n
      

      当T(n/2^k)=T(1) 时,也就是 n/2^k=1,我们得到k=log2n。将k带入上面的公式就得到T(n)=Cn+nlog2n。如用大O表示法,T(n)就等于O(nlogn)。所以,归并排序的是复杂度时间复杂度就是O(nlogn)。

    4. 空间复杂度:归并排序算法不是原地排序算法,空间复杂度是O(n)
      为什么?因为归并排序的合并函数,在合并两个数组为一个有序数组时,需要借助额外的存储空间。为什么空间复杂度是O(n)而不是O(nlogn)呢?如果我们按照分析递归的时间复杂度的方法,通过递推公式来求解,那整个归并过程需要的空间复杂度就是O(nlogn),但这种分析思路是有问题的!因为,在实际上,递归代码的空间复杂度并不是像时间复杂度那样累加,而是这样的过程,即在每次合并过程中都需要申请额外的内存空间,但是合并完成后,临时开辟的内存空间就被释放掉了,在任意时刻,CPU只会有一个函数在执行,也就只会有一个临时的内存空间在使用。临时空间再大也不会超过n个数据的大小,所以空间复杂度是O(n)。

3. 快速排序
  1. 算法原理
    快排的思想是这样的:如果要排序数组中下标从p到r之间的一组数据,我们选择p到r之间的任意一个数据作为pivot(分区点)。然后遍历p到r之间的数据,将小于pivot的放到左边,将大于pivot的放到右边,将povit放到中间。经过这一步之后,数组p到r之间的数据就分成了3部分,前面p到q-1之间都是小于povit的,中间是povit,后面的q+1到r之间是大于povit的。根据分治、递归的处理思想,我们可以用递归排序下标从p到q-1之间的数据和下标从q+1到r之间的数据,直到区间缩小为1,就说明所有的数据都有序了。

    递推公式:quick_sort(p…r) = quick_sort(p…q-1) + quick_sort(q+1, r)
    终止条件:p >= r
    

    2.代码实现

    // 快速排序,A是数组,n表示数组的大小
    quick_sort(A, n) { 
    	quick_sort_c(A, 0, n-1)
    }
    // 快速排序递归函数,p,r为下标
    quick_sort_c(A, p, r) { 
    	if p >= r then return
        q = partition(A, p, r) // 获取分区
        quick_sort_c(A, p, q-1) 
        quick_sort_c(A, q+1, r)
    }
    // 分区
    partition(A, p, r) {
      pivot := A[r]
      i := p
      for j := p to r-1 do {
        if A[j] < pivot {
          swap A[i] with A[j]
          i := i+1
        }
      }
      swap A[i] with A[r]
      return i
    }
    
    private static void quickSortC(int[] a, int p, int r) {
        if (p >= r) {
            return;
        }
        int q = partition(a, p, r);
        quickSortC(a, p, q - 1);
        quickSortC(a, q + 1, r);
    }
    
    public static int partition(int[] a, int start, int end) {
        int pivot = a[end];
        int i = start;
        for (int j = start; j < end; j++) {
            if (a[j] < pivot) {
                swap(a, i, j);
                i = i + 1;
            }
        }
        swap(a, i, end);
        return i;
    }
    

    3.性能分析

    1. 算法稳定性:
      因为分区过程中涉及交换操作,如果数组中有两个8,其中一个是pivot,经过分区处理后,后面的8就有可能放到了另一个8的前面,先后顺序就颠倒了,所以快速排序是不稳定的排序算法。比如数组[1,2,3,9,8,11,8],取后面的8作为pivot,那么分区后就会将后面的8与9进行交换。
    2. 时间复杂度:最好、最坏、平均情况
      快排也是用递归实现的,所以时间复杂度也可以用递推公式表示。
      如果每次分区操作都能正好把数组分成大小接近相等的两个小区间,那快排的时间复杂度递推求解公式跟归并的相同。
      T(1) = C; n=1 时,只需要常量级的执行时间,所以表示为 C。
      T(n) = 2*T(n/2) + n; n>1
      所以,快排的时间复杂度也是O(nlogn)。
      如果数组中的元素原来已经有序了,比如1,3,5,6,8,若每次选择最后一个元素作为pivot,那每次分区得到的两个区间都是不均等的,需要进行大约n次的分区,才能完成整个快排过程,而每次分区我们平均要扫描大约n/2个元素,这种情况下,快排的时间复杂度就是O(n^2)。
      前面两种情况,一个是分区及其均衡,一个是分区极不均衡,它们分别对应了快排的最好情况时间复杂度和最坏情况时间复杂度。那快排的平均时间复杂度是多少呢?T(n)大部分情况下是O(nlogn),只有在极端情况下才是退化到O(n^2),而且我们也有很多方法将这个概率降低。
    3. 空间复杂度:快排是一种原地排序算法,空间复杂度是O(1)
      四、归并排序与快速排序的区别
      归并和快排用的都是分治思想,递推公式和递归代码也非常相似,那它们的区别在哪里呢?
      1.归并排序,是先递归调用,再进行合并,合并的时候进行数据的交换。所以它是自下而上的排序方式。何为自下而上?就是先解决子问题,再解决父问题。
      2.快速排序,是先分区,在递归调用,分区的时候进行数据的交换。所以它是自上而下的排序方式。何为自上而下?就是先解决父问题,再解决子问题。
4. 补充
  1. O(n)时间复杂度内求无序数组中第K大元素,比如4,2,5,12,3这样一组数据,第3大元素是4。
    我们选择数组区间A[0…n-1]的最后一个元素作为pivot,对数组A[0…n-1]进行原地分区,这样数组就分成了3部分,A[0…p-1]、A[p]、A[p+1…n-1]。
    如果如果p+1=K,那A[p]就是要求解的元素;如果K>p+1,说明第K大元素出现在A[p+1…n-1]区间,我们按照上面的思路递归地在A[p+1…n-1]这个区间查找。同理,如果K<p+1,那我们就在A[0…p-1]区间查找。
    时间复杂度分析?
    第一次分区查找,我们需要对大小为n的数组进行分区操作,需要遍历n个元素。第二次分区查找,我们需要对大小为n/2的数组执行分区操作,需要遍历n/2个元素。依次类推,分区遍历元素的个数分别为n、n/2、n/4、n/8、n/16…直到区间缩小为1。如果把每次分区遍历的元素个数累加起来,就是等比数列求和,结果为2n-1。所以,上述解决问题的思路为O(n)。
  2. 有10个访问日志文件,每个日志文件大小约为300MB,每个文件里的日志都是按照时间戳从小到大排序的。现在需要将这10个较小的日志文件合并为1个日志文件,合并之后的日志仍然按照时间戳从小到大排列。如果处理上述任务的机器内存只有1GB,你有什么好的解决思路能快速地将这10个日志文件合并?
    1.申请10个40M的数组和一个400M的数组。
    2.每个文件都读40M,取各数组中最大时间戳中的最小值。
    3.然后利用二分查找,在其他数组中快速定位到小于/等于该时间戳的位置,并做标记。
    4.再把各数组中标记位置之前的数据全部放在申请的400M内存中,
    5.在原来的40M数组中清除已参加排序的数据。[可优化成不挪动数据,只是用两个索引标记有效数据的起始和截止位置]
    6.对400M内存中的有效数据[没装满]做快排。
    将排好序的直接写文件。
    7.再把每个数组尽量填充满。从第2步开始继续,知道各个文件都读区完毕。
    这么做的好处有:
    1.每个文件的内容只读区一次,且是批量读区。比每次只取一条快得多。
    2.充分利用了读区到内存中的数据。曹源 同学在文件中查找那个中间数是会比较困难的。
    3.每个拷贝到400M大数组中参加快排的数据都被写到了文件中,这样每个数只参加了一次快排。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值