文章链接:代码随想录
状态:最后一题完全没思路
Leecode 24 两两交换链表中的节点
思路:
这道题的是模拟行为的题目。关键就是画图,理清操作多个指针的顺序,以及转换过程。特别注意while的边界条件。我自己使用三个指针记录顺序前后移动实现的,一个是两个交换节点的前一个,一个是两个交换节点的第一个,一个是交换节点的第二个。随想录中用的是四个指针来记录相对位置,多了一个指向两个交换节点之后的一个节点。
代码:
public ListNode swapPairsSec(ListNode head) {
ListNode dummyhead=new ListNode(-1,head);
ListNode pre=dummyhead;
ListNode cur;
ListNode next;
while (pre.next != null && pre.next.next != null){
cur=pre.next;
next=cur.next;
pre.next=next;
cur.next=next.next;
next.next=cur;
pre=cur;
}
return dummyhead.next;
}
Leecode 19 删除链表的倒数第N个节点
思路:
用双指针。关键点是要弄明白(n+(leng-n))=((length-n)+n).所以让快指针先移动n步,然后再让快慢指针同时移动length-n的长度(就是让快指针遍历剩下长度的链表) 。这个时候慢指针指向的就是倒数n位置节点的前一个(因为从虚拟节点出发)。
实现代码:
public ListNode removeNthFromEnd(ListNode head, int n) {
if(head==null){return null;}
ListNode dummyHead=new ListNode(-1,head);
ListNode slow=dummyHead,fast=dummyHead;
for (int i = 1; i <=n ; i++) {
fast=fast.next;
}
while (fast.next!=null){
fast=fast.next;
slow=slow.next;
}
slow.next=slow.next.next;
return head;
}
Leecode02.07. 链表相交
思路:
主要是要明白短的链表从长的链表的尾部放入比较才能知道两条链表有没有相交。因为链表相交后节点的值和引用地址都会相同,所以把长链表的指针位置移动到和短链表的相对位置相同再往后遍历。要注意对比时要对比地址,当地址相同时,才代表是同一个节点才代表相交。
代码:
public ListNode getIntersectionNode(ListNode headA, ListNode headB) {
if(headA==null || headB==null){return null;}
int lenA=0,lenB=0;
ListNode ListA=headA;
ListNode ListB=headB;
while (ListA.next!=null){
ListA=ListA.next;
lenA++;
}
while (ListB.next!=null){
ListB=ListB.next;
lenB++;
}
ListA=headA;
ListB=headB;
if(lenA>lenB){
for (int i = 0; i < lenA-lenB; i++) {
ListA=ListA.next;
}
}else {
for (int i = 0; i < lenB-lenA; i++) {
ListB=ListB.next;
}
}
//交点不是数值相等,而是指针相等!!!(因为就算值相同但是也可能不是交点,地址不一样)
while (ListA!=null){
if(ListA== ListB){return ListA;}
ListA=ListA.next;
ListB=ListB.next;
}
//走到这说明没相交
return null;
}
Leecode 142.环形链表II
思路:
这里主要是分为两部步: //1.检测是否有环 2.有环怎么检测环入口
第一点很好理解,如果快慢指针到遍历结束都没相遇,那肯定不存在环。
//第二点,要理解在相遇时, 快指针永远比满指针走过的路多n圈.怎么理解呢?因为可能快指针在圈里走过n圈之后,慢指针才进来。
那么假设从头结点到环形入口节点 的节点数为x。 环形入口节点到 fast指针与slow指针相遇节点 节点数为y。 从相遇节点 再到环形入口节点节点数为 z.
相遇时: slow指针走过的节点数为: x + y fast指针走过的节点数:x + y + n(y + z), 化简后x = (n - 1) (y + z) + z. 这里也有个关键点,在慢指针进入圈的第一圈就一定会被快指针追上。因为快指针是慢指针移动速度的两倍,假设慢指针走满一圈,那这个时候快指针已经走了两圈。所以说慢指针的第一圈,就一定会被快指针追上。
因为快指针永远比慢指针先入环,所以快指针一定是至少转一圈才与满指针相遇。所以n>=1; //x = (n - 1) (y + z) + z;当n=1时,可以得到n=z; 所以可以一个指针从头出大,一个指针从相遇点出发,当天他们再次相遇时,相遇点就是环入口点。 这里的n是代表快指针先在圈里转了n圈才与慢指针相遇,等式代表x的距离等于z的距离加上n-1圈的距离。 所以其实n多大都没关系,就算n不等于1,最后快慢指针的落脚相遇点都会在环入口。
public ListNode detectCycle(ListNode head) {
ListNode slow=head;
ListNode fast=head;
while (fast!=null && fast.next!=null){
fast=fast.next.next;
slow=slow.next;
if(fast==slow){
ListNode meetPoint=fast;
ListNode pointer=head;
while (meetPoint!=pointer){
meetPoint=meetPoint.next;
pointer=pointer.next;
}
return pointer;
}
}
return null;
}