约瑟夫问题
也叫丢手绢问题, 就是一群人围成一个圈, 然后数数, 数到一个数的人出来,问出来的人的顺序
思路
整体的思路就是用一个环形的单链表, 从头结点开始计数, 比方说计到2的节点删除, 输出一个删除的顺序.
代码
/**
* 约瑟夫问题
*/
public class Test05 {
public static void main(String[] args) {
CycleLinkedList linkedList = new CycleLinkedList();
linkedList.addNodes(5);
linkedList.listNodes();
System.out.println("------------------");
linkedList.popNodes();
}
}
/**
* 链表
*/
class CycleLinkedList {
private CycleLinkedNode first = null;
/**
* @param nums 添加 nums 个节点
*/
public void addNodes(int nums) {
CycleLinkedNode tmp = null;
for (int i = 1; i <= nums; i++) {
if (i == 1) {
first = new CycleLinkedNode(i);
tmp = first;
} else if (i == nums) {
CycleLinkedNode endNode = new CycleLinkedNode(i);
endNode.setNext(first);
tmp.setNext(endNode);
} else {
CycleLinkedNode curNode = new CycleLinkedNode(i);
tmp.setNext(curNode);
tmp = curNode;
}
}
}
/**
* 遍历一下节点
*/
public void listNodes() {
if (Objects.isNull(first)) {
System.out.println("空的");
return;
}
CycleLinkedNode temp = first;
while (true) {
System.out.println(temp.getNo());
temp = temp.getNext();
if (temp == first) {
break;
}
}
}
/**
* 按照假定的顺序取出节点 (我这里写死了2)
*/
public void popNodes() {
if (Objects.isNull(first)) {
System.out.println("空的");
return;
}
int count = 1;
CycleLinkedNode temp = first;
CycleLinkedNode pre = first;
while (true) {
if (Objects.isNull(temp)) {
break;
}
if (count == 2) {
System.out.println("输出的元素 : " + temp.getNo());
pre.setNext(temp.getNext());
temp.setNext(null);
temp = pre.getNext();
count = 1;
} else {
pre = temp;
temp = temp.getNext();
count++;
}
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
/**
* 链表的节点
*/
class CycleLinkedNode {
private int no;
private CycleLinkedNode next;
public CycleLinkedNode(int no) {
this.no = no;
}
public int getNo() {
return no;
}
public void setNo(int no) {
this.no = no;
}
public CycleLinkedNode getNext() {
return next;
}
public void setNext(CycleLinkedNode next) {
this.next = next;
}
}
运行结果如下:
迷宫问题
假设我们有这么一个迷宫, 需要找到从起始位置到终点位置的一条路线
思路 我们可以用一个二维的数组来模拟这么一个迷宫, 数组里的 0 代表未走过, 1代表是墙, 2 代表这条路线已经走过了, 3代表这个是条死路
使用递归回溯算法来进行寻找路的一个过程
代码
**
* 迷宫问题
*/
public class MiGong {
public static void main(String[] args) {
//定义一个8*7的二维数组
int[][] map = new int[8][7];
//给初始二维数组赋值, 把墙给赋好值
for (int i = 0; i < 7; i++) {
map[0][i] = 1;
map[7][i] = 1;
}
for (int i = 0; i < 8; i++) {
map[i][0] = 1;
map[i][6] = 1;
}
map[3][1] = 1;
map[3][2] = 1;
map[2][2] = 1;
//遍历一下
System.out.println("找迷宫之前的地图-------------");
for (int i = 0; i < map.length; i++) {
for (int j = 0; j < map[i].length; j++) {
System.out.print(map[i][j] + " ");
}
System.out.println();
}
System.out.println("搜索之后的地图--------------");
findWay(map, 1, 1);
for (int i = 0; i < map.length; i++) {
for (int j = 0; j < map[i].length; j++) {
System.out.print(map[i][j] + " ");
}
System.out.println();
}
}
/**
* 终点坐标 (6 ,5)
*
* @param map 地图的二维数组
* @param i 初始横坐标
* @param j 初始纵坐标
* @return 返回是否可以走这个点
* 约定数组里面, 1 代表墙 , 0 代表没有走过, 2 代表走过, 3代表这个点不通
* 找路的规则 , 先判断下可不可以走, >>> 判断右 >>>判断上 >>>> 判断左 如果都不能走, 则回溯
*/
public static boolean findWay(int[][] map, int i, int j) {
if (map[6][5] == 2) { // 递归的出口
return true;
} else {
if (map[i][j] == 0) { // 如果这个点没有走过, 则开始判断这个点周围的路
// 否则直接返回false
//假设该点可以走通 , 先置为 2
map[i][j] = 2;
if (findWay(map, i + 1, j)) { //递归调用下这个方向
return true;
} else if (findWay(map, i, j + 1)) {//递归调用右这个方向
return true;
} else if (findWay(map, i - 1, j)) {//递归调用上这个方向
return true;
} else if (findWay(map, i, j - 1)) {//递归调用左这个方向
return true;
} else {//都不能走的话置为 3
map[i][j] = 3;
return false;
}
} else {
return false;
}
}
}
}
运行结果
死亡八皇后问题
一个很古老的问题, 该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即:任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。
- 第一个皇后先放第一行第一列
- 第二个皇后放在第二行第一列、然后判断是否OK, 如果不OK,继续放在第二列、第三列、依次把所有列都放完,找到一个合适
- 继续第三个皇后,还是第一列、第二列……直到第8个皇后也能放在一个不冲突的位置,算是找到了一个正确解
- 当得到一个正确解时,在栈回退到上一个栈时,就会开始回溯,即将第一个皇后,放到第一列的所有正确解,全部得到.
- 然后回头继续第一个皇后放第二列,后面继续循环执行 1,2,3,4的步骤
理论上应该创建一个二维数组来表示棋盘,但是实际上可以通过算法,用一个一维数组即可解决问题. arr[8] = {0 , 4, 7, 5, 2, 6, 1, 3} //对应arr 下标 表示第几行,即第几个皇后,arr[i] = val , val 表示第i+1个皇后,放在第i+1行的第val+1列
**代码实现: **
public class Dead8Queen {
int max = 8;
int[] array = new int[max];
static int count = 0;
public static void main(String[] args) {
Dead8Queen dead8Queen = new Dead8Queen();
dead8Queen.printQueen(0);
System.out.println("总共解法:" + count);
}
// 每一次递归时,进入到printQueen中都有 for(int i = 0; i < max; i++),因此会有回溯
private void printQueen(int n) {
//如果已经放置满了8个皇后则结束方法
if (n == max) {
print();
return;
}
for (int i = 0; i < max; i++) {
array[n] = i; //将皇后放在第N个位置上
if (!check(n)) { //判断是否会发生冲突
printQueen(n + 1); //递归调用
}
//有冲突会继续检查下一个位置
}
}
/**
* @return 返回皇后是否发生冲突
*/
private boolean check(int n) {
for (int i = 0; i < n; i++) {
//1. array[i] == array[n] 表示判断 第n个皇后是否和前面的n-1个皇后在同一列
//2. Math.abs(n-i) == Math.abs(array[n] - array[i]) 表示判断第n个皇后是否和第i皇后是否在同一斜线
// n = 1 放置第 2列 1 n = 1 array[1] = 1
// Math.abs(1-0) == 1 Math.abs(array[n] - array[i]) = Math.abs(1-0) = 1
//3. 判断是否在同一行, 没有必要,n 每次都在递增
if (array[n] == array[i] || Math.abs(n - i) == Math.abs(array[n] - array[i])) {
return true;
}
}
return false;
}
//写一个方法,可以将皇后摆放的位置输出
private void print() {
count++;
for (int i = 0; i < array.length; i++) {
System.out.print(array[i] + " ");
}
System.out.println();
}
}
运行结果: