Python计算机视觉
文章平均质量分 87
ZackSock
王者之路,岂可顺矣?
展开
-
【计算机视觉处理5】阈值处理
【计算机视觉处理5】阈值处理1、阈值处理阈值处理就是设定某个阈值,然后对大于阈值的像素或者小于阈值的像素统一处理的过程。比如下面这个简单的图像:每个格子表示一个像素,格子中的数字表示图片的像素值。如果设定阈值为8,那我们可以把图片分成两个区域,如下图:然后我们统一对绿色区域或者蓝色区域进行操作,这就是阈值处理了。我们通常的操作是将高于某一阈值的像素值处理为255,或者低于某一阈值的像素值处理为0。或者两者同时进行。当我们两者同时进行时,我们可以把这个操作成为二值化,因为处理后的图片只有纯黑和纯原创 2021-05-05 22:44:10 · 8005 阅读 · 16 评论 -
【计算机视觉处理4】色彩空间转换
【计算机视觉处理4】色彩空间转换1、图层操作在第2篇中提到过,如果是二值图片(黑白图)或者灰度图片,一个像素需要一个8位二进制来表示。而对于彩色图像,一个像素则需要用3个8位二进制来表示。我们认为灰度图只有一个图层,而普通的彩色图像则有三个图层。对于灰度图来说,像素强调的是白色的程度,当像素值为0时图像表现为黑色,当像素值为255时图像表现为白色。而处于中间的灰色,我们可以理解为“不够白”的颜色。对于彩色图像,我们通常会用RGB三个颜色表示。它们分别是红、绿、蓝,我们可以通过三种颜色的调配展现出各种原创 2020-12-26 17:32:57 · 2099 阅读 · 0 评论 -
【计算机视觉处理3】图像基本处理
【计算机视觉处理三】图像基本处理1、图像切片在前面我们了解到opencv中的图像实际上就是一个ndarray数组,我们对ndarray数组进行操作就是对图像进行操作。我们先来看一下切片查找,这是我们非常常用的一个操作。(1)一维数组的切片我们来看看切片的语法,对于一维的数组我们可以通过下面的操作获取第0个到第4个元素:array[0:5]从上面可以知道我们的切片操作是左闭右开的。上面的切片操作我们可以简写一下:array[:5]如果我们没有设置第一个值,则表示从头开始切片。当然我们还可以原创 2020-12-05 14:06:55 · 2884 阅读 · 1 评论 -
【计算机视觉处理2】 图像的基础知识
图像的基础知识作者:ZackSock1、计算机中的图像在计算机中,图像是以二进制形式存储的。但是我们通常不会以二进制方式操作图像,在处理图像时我们更乐意把图像看作是一个点集。这个集合是以二维的方式分布的,每个点都有自己的颜色,每个点都不可再分割。这样的点我们称它为【像素】。比如下面这张图片:我们可以把它看作是一个5*5的图像,其中每个点都是黑色的。早期的计算机只能显示简单的图像,比如【二值图像】。这种图像非黑即白,不容许第三种颜色存在。比如下面:对于这种图片,我们每个像素只需要一位二进制(0原创 2020-11-16 23:01:37 · 2465 阅读 · 3 评论 -
【计算机视觉处理01】OpenCV入门
OpenCV入门1、什么是opencv?OpenCV是一个跨平台且开源的计算机视觉和机器学习库,全称Open Source Computer Vision Library 。由Intel公司开源。其中主体库的代码是Intel用C/C++编写的,部分贡献库代码由社区程序员提供。OpenCV不仅支持多个平台,同时还提供了多种语言的接口,包括Java、Python、Ruby等。本次课程使用的Python语言。详细内容可以查看OpenCV的官网:[https://opencv.org/][https://o原创 2020-11-03 21:24:28 · 2031 阅读 · 0 评论