hive数据格式

1 textfile
行式存储
数据不进行压缩 网络开销比较大

·2 sequencefile 二进制文件
二进制文件,它将数据(key,value)的形式序列化到文件里
·3 ORC file
1. ORC是列式存储,有多种文件压缩方式,并且有着很高的压缩比。
2. 文件是可切分(Split)的。因此,在Hive中使用ORC作为表的文件存储格式,不仅节省HDFS存储资源,查询任务的输入数据量减少,使用的MapTask也就减少了
3. 提供了多种索引,row group index、bloom filter index。
4. ORC可以支持复杂的数据结构(比如Map等)
·4parquet
https://blog.51cto.com/11964104/2071800

Hive是一种基于Hadoop的数据仓库工具,它使用SQL查询语言(HQL)来管理大规模数据集。Hive的数据表通常采用类似于关系数据库的表格结构,但其本质是存储在HDFS(分布式文件系统)上的列式存储,这使得大数据的查询更为高效。以下是Hive数据表的一些关键特点: 1. **分区(Partitioning)**: Hive支持按照不同的字段值对表进行分区,这有助于提高查询性能,特别是当数据量非常大时,可以根据某个字段快速定位数据。 2. **桶(Bucketing)**: 类似于分区,桶是将数据分布到特定位置,通常用于哈希分区,以便进行范围查询。 3. **列式存储(Columnar Storage)**: 数据按列而不是行存储,对于大量读取操作来说,能更有效地减少I/O开销。 4. **静态元数据(Metadata)**: Hive的数据表包含元数据信息,如列名、数据类型、表分区等,这对于管理和分析至关重要。 5. **外部表(External Table)**: Hive还支持创建外部表,它们引用的是其他存储系统的数据,如HDFS、S3等,这样可以在不需要移动大量数据的情况下使用数据。 6. **分桶化(Bucketed Tables)**: 当数据需要进行范围查询时,例如时间序列数据,可以利用桶化的特性。 7. **动态分区(Dynamic Partitioning)**: 允许在插入数据时指定新的分区,增加了数据组织的灵活性。 8. **延迟加载(Lazy Loading)**: Hive默认是延迟加载模式,只有在实际访问数据时才会真正加载到内存,节省了内存资源。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值