神经网络五:常用的激活函数

本文就现在神经网络中主要的几个激活函数进行分析和讲解,比较几个激活函数的优缺点。在此特声明,本文的内容是来自:CS231n课程笔记翻译:神经网络笔记1(上) - 智能单元 - 知乎专栏。因本人有时会查阅这些相关的知识点,一直翻文档比较麻烦,特从文档中摘录复制写到博客中,其中的艰辛也是有的,希望对广大参阅者也有帮助。


每个激活函数(或非线性函数)的输入都是一个数字,然后对其进行某种固定的数学操作。下

面是在实践中可能遇到的几种激活函数:

————————————————————————————————————————


左边是Sigmoid非线性函数,将实数压缩到[0,1]之间。右边是tanh函数,将实数压缩到[-1,1]。
————————————————————————————————————————

1 Sigmoid

sigmoid非线性函数的数学公式是\textstyle f(z) = 1/(1+\exp(-z)) ,函数图像如上图的左边所示。在前一节中已经提到过,它输入实数值并将其“挤压”到0到1范围内。更具体地说,很大的负数变成0,很大的正数变成1。在历史上,sigmoid函数非常常用,这是因为它对于神经元的激活频率有良好的解释:从完全不激活(0)到在求和后的最大频率处的完全饱和(saturated)的激活(1)。然而现在sigmoid函数已经不太受欢迎,实际很少使用了,这是因为它有两个主要缺点:
(1)Sigmoid函数饱和使梯度消失。sigmoid神经元有一个不好的特性,就是当神经元的激活在接近0或1处时会饱和:在这些区域,梯度几乎为0。回忆一下,在反向传播的时候,这个(局部)梯度将会与整个损失函数关于该门单元输出的梯度相乘。因此,如果局部梯度非常小,那么相乘的结果也会接近零,这会有效地“杀死”梯度,几乎就有没有信号通过神经元传到权重再到数据了。还有,为了防止饱和,必须对于权重矩阵初始化特别留意。比如,如果初始化权重过大,那么大多数神经元将会饱和,导致网络就几乎不学习了。

(2)Sigmoid函数的输出不是零中心的。这个性质并不是我们想要的,因为在神经网络后面层中的神经元得到的数据将不是零中心的。这一情况将影响梯度下降的运作,因为如果输入神经元的数据总是正数(比如在中每个元素都有x>0),那么w关于的梯度在反向传播的过程中,将会要么全部是正数,要么全部是负数(具体依整个表达式f而定)。这将会导致梯度下降权重更新时出现z字型的下降。然而,可以看到整个批量的数据的梯度被加起来后,对于权重的最终更新将会有不同的正负,这样就从一定程度上减轻了这个问题。因此,该问题相对于上面的神经元饱和问题来说只是个小麻烦,没有那么严重。

2 Tanh

tanh非线性函数图像如上图右边所示。它将实数值压缩到[-1,1]之间。和sigmoid神经元一样,它也存在饱和问题,但是和sigmoid神经元不同的是,它的输出是零中心的。因此,在实际操作中,tanh非线性函数比sigmoid非线性函数更受欢迎。注意tanh神经元是一个简单放大的sigmoid神经元,具体说来就是:tanh(x)=2f(2x)-1 。

左边是ReLU(校正线性单元:Rectified Linear Unit)激活函数,当x=0时函数值为0。当x>0函数的斜率为1。右边是从Krizhevsky 等的论文中截取的图表,指明使用ReLU比使用tanh的收敛快6倍。

3 ReLU

在近些年ReLU变得非常流行。它的函数公式是 。换句话说,这个激活函数就是一个关于0的阈值(如上图左侧)。使用ReLU有以下一些优缺点:
(1)优点:相较于sigmoid和tanh函数,ReLU对于随机梯度下降的收敛有巨大的加速作用(Krizhevsky等的论指有6
倍之多)。据称这是由它的线性,非饱和的公式导致的。
(2)优点:sigmoid和tanh神经元含有指数运算等耗费计算资源的操作,而ReLU可以简单地通过对一个矩阵进行阈值计算得到。
(3)缺点:在训练的时候,ReLU单元比较脆弱并且可能“死掉”。举例来说,当一个很大的梯度流过Re LU的神经元的时候,可能会导致梯度更新到一种特别的状态,在这种状态下神经元将无法被其他任何数据点再次激活。如果这种情况发生,那么从此所以流过这个神经元的梯度将都变成0。也就是说,这个ReLU单元在训练中将不可逆转的死亡,因为这导致了数据多样化的丢失。例如,如果学习率设置得太高,可能会发现网络中40%的神经元都会死掉(在整个训练集中这些神经元都不会被激活)。通过合理设置学习率,这种情况的发生概率会降低。

4 Leaky ReLU

Leaky ReLU是为解决“Re LU死亡”问题的尝试。ReLU中当x<0时,函数值为0。而Leaky ReLU则是给出一个很小的负数梯度值,比如0.01。所以其函数公式为其中α 是一个小的常量。有些研究者的论文指出这个激活函数表现很错,但是其效果并不是很稳定。Kaiming He等人在2015年发布的论Delving Deep into Rectifiers中介绍了一种新方法PReLU,把负区间上的斜率当做每个神经元中的一个参数。然而该激活函数在在不同任务中均有益处的一致性并没有特别清晰。

5 Maxout

一些其他类型的单元被提了出来,它们对于权重和数据的内积结果不再使用函数形式。一个相关的流行选择是Maxout(最近由Goodfellow等发布)神经元。Maxout是对ReLU和leaky ReLU的一般化归纳,它的函数是: 。ReLU和Leaky ReLU都是这个公式的特殊情况(比如ReLU就是当w1,b1=0的时候)。这样Maxout神经元就拥有Re LU单元的所有优点(线性操作和不饱和),而没有它的缺点(死亡的ReLU单元)。然而和ReLU对比,它每个神经元的参数数量增加了一倍,这就导致整体参数的数量激增。

6 总结

以上就是一些常用的神经元及其激活函数。最后需要注意一点:在同一个网络中混合使用不同类型的神经元是非常少见的,虽然没有什么根本性问题来禁止这样做。
一句话:“那么该用那种呢?”用Re LU非线性函数。注意设置好学习率,或许可以监控你的网络中死亡的神经元占的比例。如果单元死亡问题困扰你,就试试Leaky ReLU或者Maxout
,不要再用sigmoid了。也可以试试tanh,但是其效果应该不如Re LU或者Maxout。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值