CityD
码龄7年
关注
提问 私信
  • 博客:243,144
    问答:5
    动态:1
    视频:815
    243,965
    总访问量
  • 36
    原创
  • 1,427,857
    排名
  • 13,751
    粉丝
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2018-01-10
博客简介:

tcn760的博客

查看详细资料
个人成就
  • 获得486次点赞
  • 内容获得42次评论
  • 获得2,814次收藏
  • 代码片获得6,718次分享
创作历程
  • 6篇
    2023年
  • 27篇
    2022年
  • 3篇
    2018年
成就勋章
TA的专栏
  • 分布式协议与算法
    4篇
  • 深度学习-Pytorch
    10篇
  • 机器学习(深度学习)
    9篇
  • 杂项
    1篇
  • Java
    2篇
  • 安装过程
  • 论文
    6篇
  • kaggle
    1篇
兴趣领域 设置
  • 数据结构与算法
    排序算法推荐算法
  • 人工智能
    opencvcaffetensorflowmxnetpytorchnlpscikit-learn聚类集成学习迁移学习分类回归
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

176人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

分布式协议与算法——Raft算法

Raft算法中的领导者是有任期的,每个任期由单调递增的数字表示。**跟随者在等待领导者心跳信息超时后,推荐自己为候选人时,会增加自己的任期号。**比如节点 A 的当前任期编号为 0,那么在推举自己为候选人时,会将自己的任期编号增加为 1。**如果一个服务器节点,发现自己的任期编号比其他节点小,那么它会更新自己的编号到较大的编号值。
原创
发布博客 2023.09.18 ·
389 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

分布式协议与算法——Paxos算法

当节点A、B收到提案编号为9的准备请求的时候,因为提案编号9大于之前响应的准备请求的提案编号5,并且这两个节点已经通过了之前的提案[5,7],接受者A、B会在准备请求的响应中,包含已经通过的最大编号的提案信息[5,7],并承诺以后不再响应提案编号小于9,不会通过编号小于9的提案;当客户端3收到大多数的接受者的准备请求后(节点A、B和C),根据响应中提案编号最大的提案的值,来设置请求的值,即来自A、B节点的准备响应的提案[5,7]。因此就把A、B响应值7作为提案的值,发送接受请求[9,7]。
原创
发布博客 2023.08.08 ·
784 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

分布式协议与算法——CAP理论、ACID理论、BASE理论

实际上,绝大部分场景对一致性要求没那么高,短暂的不一致是能接受的,另外,也基于可用性和并发性能的考虑,在开发实现分布式系统,如果不是必须,尽量不要实现事务,可以考虑采用最终一致性。首先节点A按照要么全部执行,要么全部放弃的原则,统计回复结果,由于所有的回复结果都是能够执行,所以节点A决定执行分布式事务操作X。为了实现一致性,确认操作和补偿操作必须是幂等的。TCC不依赖于数据库的事务(2pc应该是要依赖的),而是在业务中实现了分布式事务,这能减轻数据库的压力,但对业务代码的入侵性比较高,实现比较复杂。
原创
发布博客 2023.08.04 ·
1438 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

分布式协议与算法——拜占庭将军问题

那么燕在收到楚的作战信息的时候,会发现齐的作战信息被修改,楚已经叛变,这是燕会忽视来自楚的作战信息,最终执行齐发送的作战信息。这些都会导致自己的作战计划被扰乱,然后出现有的诸侯国在进攻,有的诸侯国在撤退的情况,而这时,秦国一定会趁机出兵,把他们逐一击破的。私钥加密,公钥解密。最终苏秦、齐、燕收到的信息都是“撤退、撤退、进攻”,按照少数服从多数的原则,执行“撤退”指令,实现了作战计划的一致性。齐、燕收到的信息列表是内容是一样的,只是顺序不一样,使用相同的排序算法,选取策略,可以保证选取的指令时一样的。
原创
发布博客 2023.08.04 ·
1154 阅读 ·
0 点赞 ·
1 评论 ·
5 收藏

Zookeeper学习笔记

Zookeeper是一个开源的分布式的,为分布式框架提供协调服务的Apache项目。
原创
发布博客 2023.07.29 ·
1386 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Java AQS核心数据结构CLH锁以及AQS中对其的改进

CLH锁是对自旋锁的一种改进。// 如果锁未被占用,则设置当前线程为锁的拥有者 while(!// 只有锁的拥有者才能释放锁 owner . compareAndSet(currentThread , null);} }自旋锁在获取锁时,线程会对一个原子变量循环执行方法,直到该方法返回成功即成功获取锁。操作是通过CAS实现的,因此该操作是原子操作。原子性保证了根据最新消息计算出新值,如果与此同时值已由另一个线程更新,则写入失败。因此,这段代码可以实现互斥锁的功能。
原创
发布博客 2023.03.30 ·
564 阅读 ·
1 点赞 ·
1 评论 ·
2 收藏

Sentence-BERT+Milvus实现智能问答系统

使用Sentence-BERT+Milvus实现的问答系统
原创
发布博客 2022.07.21 ·
1477 阅读 ·
2 点赞 ·
1 评论 ·
8 收藏

演示视频

发布视频 2022.07.20

图卷积神经网络(GCN)浅浅析

图卷积神经网络简单介绍
原创
发布博客 2022.07.09 ·
1288 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏

Pytorch实现文本情感分析

文本情感分析在本文中介绍如何使用神经网络实现情感分析任务,主要内容为:加载预训练的词向量介绍如何处理情感分析数据集使用循环神经网络模型训练使用以为卷积神经网络模型训练参考:动手学深度学习1、加载Glove预训练的词向量下面创建TokenEmbedding类来加载并使用预训练的词向量。import torchimport osimport collectionsfrom torch import nnfrom d2l import torch as d2lfrom torc
原创
发布博客 2022.05.29 ·
3138 阅读 ·
5 点赞 ·
0 评论 ·
33 收藏

pytorch中的pad_sequence、pack_padded_sequence和pad_packed_sequence函数

torch.nn.utils.rnn.pad_sequence、torch.nn.utils.rnn.pack_padded_sequence和torch.nn.utils.rnn.pad_packed_sequence在使用pytorch训练模型的时候,一般采用batch的形式同时处理多个样本序列,而同一batch中时序信息的的长度是不同的,这样就无法传入RNN,LSTM,GRU这样的模型中进行处理。一个常用的做法是按照一个指定的长度(或者按照batch中最长的序列长度)对batch中的序列进行填充(p
原创
发布博客 2022.05.26 ·
9153 阅读 ·
32 点赞 ·
2 评论 ·
84 收藏

2019_IJCAI_Adapting BERT for Target-Oriented Multimodal Sentiment Classification

Adapting BERT for Target-Oriented Multimodal Sentiment Classification论文地址:https://ink.library.smu.edu.sg/sis_research/4441/代码地址:https://github.com/jefferyYu/TomBERT 1、简介面向目标的情感分类(Targetoriented Sentiment Classification,TSC)的目标是识别句子中每个观点的情感极性。然而这一任务现
原创
发布博客 2022.05.20 ·
1105 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

2019_AAAI_Multi-Interactive Memory Network for Aspect Based Multimodal Sentiment Analysis

Multi-Interactive Memory Network for Aspect Based Multimodal Sentiment Analysis论文地址:https://ojs.aaai.org/index.php/AAAI/article/view/38071、简介方面级的情感分析的目标是为了识别一个句子中指定方面的情感极性,它可以分为一下两类:Aspect term:Aspect Term Sentiment Analysis的目标是预测每个实体的情感,实体为输入文本中提到的
原创
发布博客 2022.05.19 ·
1489 阅读 ·
2 点赞 ·
0 评论 ·
10 收藏

Transformer

Transformer是在"Attention is All You Need"提出来的,是一个基于attention(自注意力机制)结构来处理序列相关问题的模型。Transfomer在很多不同的nlp任务中取得了成功,例如:文本分类、机器翻译等。Tranformer没有使用CNN或者RNN的结构,完全基于注意力机制,自动捕捉输入序列不同位置的关系,擅长处理长文本序列信息,并且该模型可以高度并行工作,训练速度较快。尽管Transformer最初是应用于序列到序列的学习文本数据,但是现在已经推广到了各种现
原创
发布博客 2022.04.29 ·
587 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

编码器-解码器(seq2seq)

文章目录1、编码器解码器架构1.1、概念1.2、代码1.2.1、编码器(Encoder)1.2.2、解码器(Decoder)1.2.3、合并编码器和解码器2、seq2seq模型2.1、编码器2.2、解码器2.3、编码器-解码器细节2.4、训练&推理2.5 评价指标-BLEU3、机器翻译代码3.1、机器翻译数据集3.1.1、下载和预处理数据集3.1.2、词元化3.1.3、词表3.1.4、截断和填充文本序列3.1.5、构建数据迭代器3.2、seq2seq模型搭建与训练3.2.1、编码器3.2.2、解码器
原创
发布博客 2022.04.26 ·
18520 阅读 ·
29 点赞 ·
1 评论 ·
217 收藏

Chapter7 循环神经网络-2

文章目录5、LSTM & GRU5.1、长短时记忆网络(Long Short-Term Memory, LSTM)5.1.1、相关概念5.1.2、从零开始实现5.1.3、简洁实现5.2、门控循环单元(Gated Recurrent Unit, GRU)5.2.1、相关概念5.2.2、模型实现6、深度循环神经网络7、双向循环神经网络(Bi-RNN)第一部分地址5、LSTM & GRU在实际应用中,上述的标准循环神经网络的优化算法面临一个很大的问题,就是长期依赖问题——由于网络结构的变深使
原创
发布博客 2022.04.23 ·
1538 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

Chapter7 循环神经网络-1

文章目录1、语言模型1.1、语言模型的概念1.2、语言模型的计算1.3、马尔科夫假设1.4、语言模型评价指标:困惑度(Perplexity)2、文本预处理2.1、读取数据集2.2、词元化2.3、词表2.4、整合所有的功能3、读取时序数据3.1、随机采样3.2、相邻采样3.3、操作整合4、循环神经网络4.1、概念4.2、通过时间反向传播4.2.1、定义模型4.2.2、模型计算图4.2.2、计算4.3、应用:基于字符级循环神经网络的语言模型4.4、循环神经网络从零实现4.4.1、独热(ont-hot)编码4.4
原创
发布博客 2022.04.23 ·
1779 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

2020_ACM MM_MISA: Modality-Invariant and -Specific Representations for Multimodal Sentiment Analysis

MISA: Modality-Invariant and -Specific Representations for Multimodal Sentiment Analysis论文地址:https://dl.acm.org/doi/abs/10.1145/3394171.3413678?casa_token=oI8VnZ8Eg10AAAAA:mVUbDA0AZiAXcDxiDmV9-ooRH4PxzlSMXkBCgm1OCopziDWz8U3ZU54VzJIfqCCsbRFAvk8_kJhzBQ简介
原创
发布博客 2022.04.20 ·
6305 阅读 ·
9 点赞 ·
2 评论 ·
35 收藏

NLP-语言模型

语言模型1、语言模型的概念语言模型(language model)是自然语言处理的重要技术。自然语言处理中最常见的数据就是文本数据。我们可以把一段自然语言文本看作一段离散的时间序列。假设一段长度为TTT的文本中的词依次为w1,w2,⋯ ,wTw_1,w_2,\cdots ,w_Tw1​,w2​,⋯,wT​,那么在离散的时间序列中,wt(1≤t≤T)w_t(1\le t \le T)wt​(1≤t≤T)可以看作在时间步ttt的输出或者标签。给定一个长度为TTT的序列w1,w2,⋯ ,wTw_1,w_2,\
原创
发布博客 2022.04.14 ·
5125 阅读 ·
1 点赞 ·
0 评论 ·
13 收藏

2020_ACL_A Transformer-based joint-encoding for Emotion Recognition and Sentiment Analysis

A Transformer-based joint-encoding for Emotion Recognition and Sentiment Analysis情感分析和情绪识别对于情感分析来说, 情感表达可以来源于文字、音频、图像, 结合两种及以上模态建模情感分析, 就是多模态情感分析。如下图所示,利用文本、图像、音频(这三个模态来源于多媒体数据,其中的文本和声音和图像数据是从该多媒体数据中提取出的)三个模态去分析多媒体数据所表达的情感是积极的还是消极的或者是什么情绪(开心,激动,伤心,生气),就是
原创
发布博客 2022.04.12 ·
2503 阅读 ·
3 点赞 ·
0 评论 ·
11 收藏
加载更多