欧拉函数

欧拉函数:对于正整数n,欧拉函数是小于等于n的数中与n互质的数的数目。
一般用φ(x)表示,特殊的,φ(1)=1。

其中pi表示x的质因子。
理解:举个例子:12 (1,2,3,4,5,6,7,8,9,10,11,12),它的质因子有2,3;
有(1/2))的数是2的倍数(2,4,6,8,10,12),有(1-(1/2))的数字不是2的倍数(1,3,5,7,9,11),在这些数中有(1/3)的数是3的倍数(3,9),只有(1-(1/2)*(1-(1/3))的数字(1,5,7,11)既不是2的倍数也不是3的倍数,即与12互质。
那么便好理解这个公式了,x中有p1,p2,p3,...,pn个质因数,
即有x*(1-(1/p1))*(1-(1/p2))*(1-(1/p3)...*(1-(1/pn)个数字与x互质。
性质:
积性函数:φ(a*b)=φ(a)*φ(b)(a与b互质);
证明:


因为a与b互质,所以bi与ai无重复,所以
φ(a)*φ(b)=
(pi为a和b的质因子)=φ(a*b);
引理:
1.如果n为某个素数p,则φ(p)=p-1;
证明:如果p为素数,比p小的数都与p互质,共有(p-1)种。
2.如果n为某个素数p^a^,则φ(n)=(p-1)*p^a-1^;
证明:因为p是质数,所以q^a^的质因子只有q;所以在p^a^中有p^a^个数,减去q的所有倍数,即使答案。

φ(n)=p^a^-p^a-1^=(p-1)*p^a-1^.
3.即欧拉函数是积性函数。

欧拉定理:若a与m互质,则a^φ(n)^mod m=1mod m。

证明:

求欧拉函数:

1.若单纯的求某个数的欧拉函数,直接从(1~sqrt(n))枚举即可。

2.埃氏筛。

 tp=phi=m;
    for (i=2;i*i<=m;++i)
    {
        if(tp%i==0)
        {
            phi=phi-phi/i;
            while(tp%i==0) tp/=i;
        }
    }
    if(tp>1)
        phi=phi-phi/tp;

3.欧拉筛.

#include<iostream>
#include<cstdio>
using namespace std;
const int maxn=40010;
int n;
int phi[maxn],prime[maxn],tot,ans;
bool mark[maxn];
void getphi()
{
	int i,j;
	phi[1]=1;
	for(int i=2;i<=n;i++)
	{
		if(!mark[i])
		{
			prime[++tot]=i;
			phi[i]=i-1;
		}
		for(int j=1;j<=tot;j++)
		{
			if(i*prime[j]>n) break;
			mark[i*prime[j]]=1;
			if(i%prime[j]==0)
			{
				phi[i*prime[j]]=phi[j]*prime[j];break;
			}
			else phi[i*prime[j]]=phi[i]*(prime[j]-1);
		}
	}
}
int main()
{
	cin>>n;
	getphi();
	for(int i=1;i<=n;i++)
	printf("%d ",phi[i]);
	return 0;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值