自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

原创 总结与宣传

学习总结今天这篇博文不是具体的介绍方法也不是读论文的笔记。主要围绕以下两个方面介绍。首先,说一下近一年的学习和自身变化;其次,总结一下滚动轴承性能退化趋势预测的重要点和一些误区。学习和自身变化 今天是2021.5.1,首先和大家说下五一劳动节快乐。由于疫情去年的劳动节在家里度过,很快,转眼间一年过去;在这一年里,其中有很多心酸和高兴时刻;去年的这个时候自己连数据都不知道怎么读,整天的看论文,也不知道怎么实现,由于自己该死的自尊心,不想向别人低头,自己弄花费了很多时间也没弄出来,想起来也很好笑(哈哈哈

2021-05-01 16:50:02 18

原创 流形学习之拉普拉斯特征映射

首先,我们说一下流形学习;接着,我们重点介绍拉普拉斯特征映射算法;最后,本文将给出拉普拉斯特征特征映射算法代码。流形学习流形学习是一种非线性降维方法,能够从高维数据中发现低维流形结构,得到高维和低维之间的映射关系,从而实现数据的维数约简。**为什么要实现特征约简?**因为高维的数据存在数据量大并且高维数据输入到网络模型中训练难度较大,耗费时间长。流形学习展示图,其中包括Isomap(等距映射算法),LLP(局部保持投影),LE(拉普拉斯特征映射),LTSA()、MVU等拉普拉斯特征映射原理拉普

2021-01-29 01:43:29 394 1

原创 频域统计特征介绍

频域特征介绍频域是通过傅里叶变换将时域进行变换,傅里叶变换具体请看https://blog.csdn.net/l494926429/article/details/51818012/,这是一位大牛,解释的很清除并且易懂。

2021-01-14 10:56:34 1103 5

原创 时域统计特征介绍

时域统计特征

2021-01-08 10:48:41 314

原创 2020总结

2020总结回想这一年,发生了很多事,也好像也没有很多事。1.生活上变化对比2019年,今年的生活多彩!因为疫情,在家里生活了很长时间,从来没有这么长的时间在家里待过。在家里一个的时候回想到什么时候才能返校。后来到了学校没多长时间,学校不给留校,然后暑假的时候偷偷的跑到实验室学习,回想起来也是很有意思。2020生活好的方面1.以前上学为了钱担忧,错过了一些接触学习的机会,现在倒不会为经济上担忧。生活上还有一些意外的惊喜,买衣服,零食等等在实验室相处的也比较愉快2020生活坏的方面...

2021-01-01 02:23:58 263 2

原创 滚动轴承退化趋势预测

性能退化趋势预测总结个人觉得性能退化趋势预测比寿命预测做出东西简单一点,但是找问题的话都是不简单的,说到找问题,这就要写文献综述了,写文献综述的意义是找到你要解决的问题;看到这里就会问如何写文献综述?https://zhuanlan.zhihu.com/p/53322770(很详细)。性能退化趋势预测的关键步骤:1. 衰退性能指标的建立2. 预测模型的建立说白了预测模型就是拟合,不同的模型拟合程度不一样,重点是衰退指标的建立,衰退指标建立又和统计特征有关(时域、频域、时频域、三角函数等)。衰退指

2020-09-28 20:13:42 424 4

原创 小波包能量特征提取

最近在弄小波包能量特征提取,可以说弄了很长时间。废话不多说,抓紧时间上重点!小波变换小波变换是处理低频的信息,但是对于高频却不能处理。不能处理非线性、非平稳的信号(例如滚动轴承)。小波包变化因为有不足,才会发展;知识也是这样,所以小波包问世。小波包变化弥补了小波变换的不足之处,即可对低频也可对高频信号处理;小波包能量特征提取我提取的是8维db3小波包能量特征,以上即是小波包树,其中节点的命名规则是从(1,0)开始,叫1号, (1,1)是2号………依此类推,(3,0)是7号,(3,7)是14号

2020-06-20 22:20:58 2743 1

原创 VGGNet网络模型

**背景介绍VGGNet网络模型是在2014年提出,同时也提出了GoogleNet;VGGNet有一个重要的idea,引入卷积层中使用了33卷积核,并连续多次33卷积核的卷积层。*为什么VGGNet网络模型使用连续的小卷积核?*连续多层小核卷积层不仅能够产生感知区域,还能带来性能上的优化。连续多层卷积的网络结构比单卷积层的网络结构能更有效地提取高维特征;大幅度减少CNN的权重参数;有效减少边界特征损失;VGGNet网络模型介绍输入层:输入为2242243或者1224224Bloc

2020-06-10 17:09:56 202

原创 LeNet5网络模型

LeNet5网络模型是卷积神经网络的开创性模型,提取了三大思想1.局部感知2.下采样3.权值共享LeNet5共分为7层;第一层:输入层:输入为3232的图像C1层(卷积层):使用6个大小为55的卷积核对输入图像进行卷积操作,卷积后得到特征尺寸为28,因此得到2828特征图S2层(下采样层):MAX polling操作,polling窗口为22,经过polling层后得到6个1414的特征图,作为下一层输入C3层(卷积层):使用16个大小为55的卷积核,输出为161010S4层(下采样层):

2020-06-03 22:11:39 143

空空如也

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除