摘要 再谈错数。
1. 错数是个“坎儿”,是个分界线。
2. 只有计算精度过了这个坎儿,结果总体上才能越来越精确(但是,局部也许有小的振荡)。
3. 若计算精度不达这个坎儿,那么,一般来说,计算结果是错误的;并且随着精度的提高,结果似乎无规则可循。
4. 错数是函数值与自变量各自含有错误数字个数的差。
5. 若错数为0,那么函数值不会多损失正确有效数字。即函数值与自变量拥有相同的正确有效数字个数。
6. 若错数大于0,那么函数值会损失正确的有效数字。
7. 若错数小于0,那么函数值会增加正确的有效数字。其典型案例就是牛顿迭代法。