计算机的错误计算(一百一十五)

摘要  用错数定量解释计算机的错误计算(一百一十四)中的错误计算原因。

例1.  已知 x_0=0.99993\,,  f(x)=(x-1)^4\,.  计算 f(x) 在 x_0 的错数,并与计算机的错误计算(一百一十四)中的相应错误数字个数做比较。

        由 x_0=0.99993 知,m_1=0\,.  再由

f(x_0)=(x_0-1)^4=0.2401\textup{e}-16\,, \\f'(x)|_{x=x_0=0.99993}=4\times(0.99993-1)^3=-0.1372\textup{e}-11\,,

可得,m_2=-16\,,  m_0=-11\,.  因此,错数为 

m_1-m_2+m_0=0-(-16)+(-11)=5\,. 

于是,按照现有计算模式,计算机给出的函数值结果中应该含有5位或4位错误数字。而这个预测正好与(一百一十四)中实际情况相吻合。

例2.  若改例1中的自变量为 x_1=0.9999999999999999\,.  计算 f(x) 在 x_1 的错数,并与(一百一十四)中输出做比较。

        同样,m_1=0\,.  由

   f(x_1)=(x_1-1)^4=0.1\textup{e}-63\,, \\f'(x)|_{x=x_1=0.9999999999999999}=4\times(x_1-1)^3=-0.4\textup{e}-47\,,

可得,m_2=-63\,,  m_0=-17\,.  因此,错数为 

m_1-m_2+m_0=0-(-63)+(-47)=16\,.

于是,按照现有计算模式,计算机给出的函数值结果中应该含有16位或15位错误数字。

       事实上,Python的输出中含有15位错误数字:1.5192908393215678e-64 . 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值