LeetCode——3180. 执行操作可获得的最大总奖励 I

. - 力扣(LeetCode)

题目

给你一个整数数组 rewardValues,长度为 n,代表奖励的值。

最初,你的总奖励 x 为 0,所有下标都是 未标记 的。你可以执行以下操作 任意次 

  • 从区间 [0, n - 1] 中选择一个 未标记 的下标 i
  • 如果 rewardValues[i] 大于 你当前的总奖励 x,则将 rewardValues[i] 加到 x 上(即 x = x + rewardValues[i]),并 标记 下标 i

以整数形式返回执行最优操作能够获得的 最大 总奖励。

示例 1:

  • 输入:rewardValues = [1,1,3,3]
  • 输出:4
  • 解释:依次标记下标 0 和 2,总奖励为 4,这是可获得的最大值。

示例 2:

  • 输入:rewardValues = [1,6,4,3,2]
  • 输出:11
  • 解释:依次标记下标 0、2 和 1。总奖励为 11,这是可获得的最大值。

提示:

  • 1 <= rewardValues.length <= 2000
  • 1 <= rewardValues[i] <= 2000

解题方法

1. 暴力解法

思路:暴力解法就是每个位置的元素都有被标记和不被标记两种可能,列举所有可能的序列和,然后取最大值。 

需要特别注意一点,之后执行标记的操作的每一次奖励的值rewardValues[i]都大于执行操作前的奖励之和x,因此可以知道rewardValues的标记顺序需要时单调递增的,需要预先对这个列表进行排序。

class Solution:
    def maxTotalReward(self, rewardValues: List[int]) -> int:
        x_list = [0]
        rewardValues.sort() # 注意此处必须按照从大到小排序,否则因为reward机制限制,无法列举出逆序标记的情况
        for i in rewardValues:
            length = len(x_list)
            for item in range(length):
                if x_list[item] < i:
                    x_list.append(x_list[item] + i)
        return max(x_list)
        

 分析时间复杂度:

Python list是指针动态数组的形式存储的,排序的时间复杂度是O(nlogn),穷举所有序列的时间复杂度是O(2^n),因此总体时间复杂度是O(2^n)

2. 动态规划

通常,指数级的穷举法对应的优化算法是动态规划。

如何定义动态规划的状态数组呢?

       通过定义可知,对升序排列后的rewardValue, 最大的奖励max\_reward=2*rewardValue[-1] - 1,因此,可以定义奖励状态数组为:

 dp[max\_reward],

其中每个元素dp[k]\in [0, 1],

  • 如果可以取得奖励值k, 则dp[k]=1,否则dp[k]=0

状态是如何转移的呢?

以当前选中元素值i为例,则当前可获得的奖励范围是r_i \in [i, 2*i - 1]。根据i之前的奖励状态,确定[i, 2*i-1]的奖励状态。状态转移方程为:

dp[j] = dp[j-i] \qquad for\ j\ in [i, 2*i-1]

class Solution:
    def maxTotalReward(self, rewardValues: List[int]) -> int:
        x_list = [0]
        rewardValues.sort()
        # 初始化状态数组
        dp = [0] * (2 * rewardValues[-1])
        dp[0] = 1
        for i in rewardValues:
            for j in range(2 * i - 1, i - 1, -1):
                if dp[j - i] == 1:
                    dp[j] = 1
        for i in range(len(dp) - 1, -1, -1):
            if dp[i] == 1:
                return i
        

 分析时间复杂度

记rewardValues长度为n, 最大值为m,

  • 数组排序时间复杂度O(nlogn)
  • 计算状态方程的过程事件复杂度为O(nm)
  • 寻找最大值时间复杂度是O(m)
  • 综合来看时间复杂度为O(n(m+logn))(因为有nm,所以O(m)忽略不计)

分析空间复杂度

  • 数组排序空间复杂度O(n)(TimeSort, 如果C++快排的话是O(nlogn))
  • 状态数组空间复杂度为O(m)
  • 综合来看空间复杂度是O(m+n)

对比下AI:(智谱清言)

贪心算法思路错误,第二个例子验证不通过。

人类战胜AI的一天,哦吼~~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值