TF-IDF特征值

本文介绍了TF-IDF的概念,它通过词频和逆向文件频率计算词语的重要性。TF-IDF分数等于词频乘以逆向文件频率。此外,还探讨了信息熵的相关概念,包括自信息熵、条件熵、联合熵和互信息,引用了《从投骰子到阿尔法狗》中的相关内容。

1.TF-IDF简介

内容参考百度百科
TFIDF实际上是:TF * IDF

词频(term frequency,TF)指的是某一个给定的词语在该文件中出现的频率。

逆向文件频率(inverse document frequency,IDF)是一个词语普遍重要性的度量。某一特定词语的IDF,可以由总文件数目除以包含该词语之文件的数目。

这边的例子以上述的数学公式来计算。词频 (TF) 是一词语出现的次数除以该文件的总词语数。假如一篇文件的总词语数是100个,而词语“母牛”出现了3次,那么“母牛”一词在该文件中的词频就是3/100=0.03。一个计算文件频率 (IDF) 的方法是文件集里包含的文件总数除以测定有多少份文件出现过“母牛”一词。所以,如果“母牛”一词在1,000份文件出现过,而文件总数是10,000,000份的话,其逆向文件频率就是 lg10,000,000 / 1,000)=4。最后的TF-IDF的分数为0.03 * 4=0.12。

2.计算文本中的TF-IDF值

使用skitlearn中的TfidfTransformer函数

# coding:utf-8
 
import jieba
import jieba.posseg as pseg
import os
import sys
from sklearn import feature_extraction
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.feature_extraction.text import CountVectorizer
 
if __name__ == "__main__":
    corpus=["我 来到 北京 清华大学",#第一类文本切词后的结果,词之间以空格隔开
        "他 来到 了 网易 杭研 大厦",#第二类文本的切词结果
    &nb
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值