
数字图像处理
TechArtisan6
集思广益开眼界,处处留心皆学问。坚持你所热爱的,热爱你所坚持的,剩下的交给时间就好。
展开
-
数字图像处理专栏目录
注:转载请标明原文出处链接:https://xiongyiming.blog.csdn.net/article/details/103137690为了方便查阅复习,将自己原来撰写的博文进行整理,数字图像处理专栏目录如下:数字图像处理(1): 数字图像处理领域应用——电磁波谱 可见光数字图像处理(2): 颜色空间/模型—— RGB, CMY/CMYK, HSI, HSV, YUV数字...原创 2019-11-19 10:54:59 · 7295 阅读 · 1 评论 -
数字图像处理(13): 形态学处理——图像开运算与图像闭运算
目录1 图像开运算(先腐蚀,后膨胀)1.1 基本原理1.2 代码示例2 图像闭运算(先膨胀,后腐蚀)2.1 基本原理2.2 代码示例3 图像梯度运算(膨胀—腐蚀)3.1 基本原理3.2 代码示例参考资料前面介绍了 形态学处理——图像腐蚀与图像膨胀,图像膨胀会扩大一幅图像的组成部分,而图像腐蚀会缩小一幅图像的组成部分。下面将继续介绍形态学处理中的开...原创 2019-05-03 22:14:29 · 62020 阅读 · 3 评论 -
数字图像处理(14): 形态学处理——图像顶帽运算和黑帽运算
目录1 图像顶帽运算(原始图像 — 开运算)1.1 基本原理1.2 代码示例2 图像黑帽运算(闭运算 — 原始图像)2.1 基本原理2.2 代码示例参考资料前面介绍了 形态学处理——图像开运算与图像闭运算,其中:图像开运算:先腐蚀,后膨胀。一般会平滑物体的轮廓、断开较窄的狭颈并消除细的突出物。图像闭运算:先膨胀,后腐蚀。同样也会平滑轮廓的一部分。但与开...原创 2019-05-04 08:59:07 · 12639 阅读 · 0 评论 -
数字图像处理(15): 灰度直方图(matplotlib 和OpenCV 绘制直方图)
目录1 灰度直方图简介1.1 灰度直方图概念1.2 灰度直方图作用1.3 绘制的直方图1.4 归一化直方图2 matplotlib库 绘制直方图-hist()3 OpenCV库 绘制直方图-calcHist()参考资料1 灰度直方图简介1.1 灰度直方图概念灰度直方图(histogram)是灰度级的函数,描述的是图像中每种灰度级像素的个数,反映...原创 2019-05-04 09:29:22 · 51064 阅读 · 1 评论 -
数字图像处理(16): 图像颜色空间转换 和 OpenCV图像灰度化处理
目录1 图像灰度化原理2 图像颜色空间转换3 OpenCV图像灰度化处理3.1 最大值灰度处理3.2 平均灰度处理3.3 加权平均灰度处理参考资料1 图像灰度化原理在图像处理算法中,往往需要把彩色图像转换为灰度图像。图像灰度化是将一幅彩色图像转换为灰度化图像的过程。彩色图像通常包括R、G、B三个分量,分别显示出红绿蓝等各种颜色,灰度化就是使彩色图像的R、G、...原创 2019-05-04 11:03:38 · 9932 阅读 · 0 评论 -
数字图像处理(17): 直方图均衡化处理
目录1 直方图均衡化简介1.1 直方图均衡化概念1.2 直方图均衡化的理论基础1.3 直方图均衡化的步骤1.4 直方图均衡化应用场景2 直方图均衡化-equalizeHist()3 matplotlib.pyplot.subplot() 函数4 matplotlib.pyplot.imshow() 函数5 直方图均衡化对比参考资料1 直方图均衡...原创 2019-05-04 19:55:20 · 77473 阅读 · 19 评论 -
数字图像处理(18): 图像灰度变换——线性灰度变换 和 非线性灰度变换(对数变换 与 伽马变换)
目录1 灰度变换简介2 线性灰度变换—图像反转3 非线性灰度变换3.1 对数变换3.2 伽马变换参考资料1 灰度变换简介灰度变换是图像增强的一种重要手段,用于改善图像显示效果,属于空间域处理方法,它可以使图像动态范围加大,使图像对比度扩展,图像更加清晰,特征更加明显。灰度变换其实质就是按一定的规则修改图像每一个像素的灰度,从而改变图像的灰度范围。常见的灰度变换...原创 2019-05-04 21:51:12 · 58070 阅读 · 6 评论 -
数字图像处理(19): 边缘检测算子(Roberts算子、Prewitt算子、Sobel算子 和 Laplacian算子)
目录1 边缘检测的基本原理2 边缘检测算子分类3 梯度3.1 图像梯度3.2 梯度算子4 Roberts 算子4.1 基本原理4.2 代码示例5 Prewitt 算子5.1 基本原理5.2 代码示例6 Sobel 算子6.1 基本原理6.2 代码示例7 Laplacian 算子7.1 基本原理7.2 代码示例8 小结8...原创 2019-05-05 16:15:33 · 183185 阅读 · 42 评论 -
Harris角点检测 及 Matlab实验
目录1 基础知识1.1 图像变化的类型1.2 提取点特征的作用1.3 什么是好的角点检测算法?2Harris 角点检测2.1 Harris角点检测基本思想2.2 Harris角点检测:数学描述3 总结4 Matlab 实验参考资料角点是图像重要的特征,对图像图形的理解和分析有很重要的作用。角点在保留图像图重要特征的同时,可以有效地减少信息的数据量,...原创 2019-04-25 16:53:45 · 20980 阅读 · 3 评论 -
数字图像处理(20): 边缘检测算子(Canny算子)
目录1 边缘检测算子分类2 Canny算子2.1 基本理论2.2 代码示例3 各类算子实验比较参考资料前面已经介绍了边缘检测算子(Roberts算子、Prewitt算子、Sobel算子 和 Laplacian算子), 下面会介绍Canny算子。介绍Canny算子之前,还是看一下边缘检测算子分类。1 边缘检测算子分类(1)一阶导数的边缘检测算子通过...原创 2019-05-12 21:46:35 · 60189 阅读 · 4 评论 -
数字图像处理(21): 图像金字塔(高斯金字塔 与 拉普拉斯金字塔)
目录1 图像金字塔简介2 向下取样——pyrDown()2.1 基础理论2.2 代码示例3 向上取样——pyrUp()3.1 基础理论3.2 代码示例4Laplacian 金字塔4.1 基础理论4.2 代码示例参考资料1 图像金字塔简介以多个分辨率来表示图像的一种有效且概念简单的结构是图像金字塔。图像金字塔最初用于机器视觉和图像压缩,...原创 2019-05-13 10:38:49 · 23137 阅读 · 5 评论 -
数字图像处理(12): 形态学处理——图像腐蚀与图像膨胀
目录1 形态学操作2 图像腐蚀3 图像膨胀参考资料1 形态学操作形态学(morphology)一词通常表示生物学的一个分支,该分支主要研究动植物的形态和结构。这里,我们使用同一词语表示数学形态学的内容,将数学形态学作为工具从图像中提取表达和描绘区域形状的有用图像分量,如边界、骨架和凸壳等。形态学处理主要针对的是二值图像(0或1)。形态学通常使用图像腐蚀和图像膨胀...原创 2019-05-03 20:47:37 · 30387 阅读 · 4 评论 -
数字图像处理(11): 图像平滑 (均值滤波、中值滤波和高斯滤波)
目录1 图像增强——图像平滑1.1 图像增强简介1.2 图像平滑2 均值滤波3 中值滤波4 高斯滤波参考资料1 图像增强——图像平滑1.1 图像增强简介图像增强是对图像进行处理,使其比原始图像更适合于特定的应用,它需要与实际应用相结合。对于图像的某些特征如边缘、轮廓、对比度等,图像增强是进行强调或锐化,以便于显示、观察或进一步分析与处理。图像增强主要是一...原创 2019-05-03 17:28:20 · 131970 阅读 · 19 评论 -
数字图像处理(1): 数字图像处理领域应用——电磁波谱 可见光
目录1 伽马射线2 X射线成像3 紫外波段成像4 可见光及红外波段成像4.1 可见光波长范围4.2 可见光的特性5 微波波段成像6 无线电波段成像参考资料以电磁波谱辐射为基础的图像我们最为熟悉,特别是X射线和可见光谱波段的图像。电磁波可以定义为以各种波长传播的正弦波,或是无质量的粒子流,每个粒子以波的形式传播并以光的速度运动。每个无质量的粒子包含一定的能...原创 2019-04-20 19:43:16 · 8829 阅读 · 0 评论 -
数字图像处理(2): 颜色空间/模型—— RGB, CMY/CMYK, HSI, HSV, YUV
目录1 什么是颜色2 颜色的数字化3 常见的颜色模型3.1 RGB 模型3.2 CMY/CMYK 模型3.3 HSI 模型3.4 HSV 模型3.5 HSB 模型3.6 Lab 模型3.7 YUV 模型3.8 模型分类4 Python代码示例参考资料1 什么是颜色颜色是通过眼、脑和我们的生活经验所产生的对光的视觉感受,我们肉眼...原创 2019-04-21 10:46:48 · 41847 阅读 · 20 评论 -
数字图像处理(6): OpenCV + Numpy库读取与修改图像的像素值
目录1 传统方法读取与修改图像的像素值1.1 读取图像的像素值1.2 修改图像的像素值2 使用Numpy库读取像素方法与修改图像的像素值2.1 读取图像的像素值2.2 修改图像的像素值参考资料1 传统方法读取与修改图像的像素值1.1 读取图像的像素值(1)读取灰度图像例如:img = cv2.imread("lena1.tiff", cv2.IM...原创 2019-04-25 21:12:52 · 3634 阅读 · 0 评论 -
数字图像处理(7): 获取图像属性、感兴趣区域(ROI) 和 通道拆分与合并
目录1 获取图像的属性1.1 形状-shape1.2 像素数目-size1.3 图像类型-dtype2 获取图像的感兴趣区域(ROI)3 图像的通道拆分与合并3.1 通道拆分-split()3.2 通道合并-merge()参考资料1 获取图像的属性图像的属性有:(1)形状:行、列 和 通道数量;(2)像素数量;(3)图像的数据类...原创 2019-04-26 10:16:04 · 10542 阅读 · 1 评论 -
数字图像处理(8): 图像加法与融合运算 和 图像类型转换
目录1 图像加法运算1.1 Numpy库加法运算1.2 OpenCV加法运算- add()1.3 对比实验2 图像融合-addWeighted()3 图像类型转换- cvtColor()参考资料1 图像加法运算1.1 Numpy库加法运算Numpy库加法的运算方法为:目标图像 = 图像1 + 图像2,运算结果进行取模运算。有以下两种情况:...原创 2019-04-26 16:04:59 · 6805 阅读 · 2 评论 -
数字图像处理(3): 图像中的高频分量与低频分量
目录1 为什么图像边缘是图像高频分量呢?2 图像傅立叶变换的物理意义参考资料1 为什么图像边缘是图像高频分量呢?网上有一个解释非常形象:将傅里叶变换比作一个玻璃棱镜。棱镜是可以将光分解为不同颜色的物理仪器,每个成分的颜色由波长(或频率)来决定。傅里叶变换可以看作是数学上的棱镜,将函数基于频率分解为不同的成分。当我们考虑光时,讨论它的光谱或频率谱。同样, 傅立叶变换...原创 2019-04-22 15:12:36 · 32484 阅读 · 4 评论 -
数字图像处理(9): 图像缩放、图像旋转、图像翻转 和 图像平移
目录1 图像缩放-resize()2 图像旋转-getRotationMatrix2D(), warpAffine()3 图像翻转- flip()4 图像平移-warpAffine()参考资料图像几何变换有图像缩放、图像旋转、图像翻转和图像平移等。1 图像缩放-resize()图像缩放主要调用 resize() 函数实现,具体如下:resul...原创 2019-04-26 21:26:00 · 13054 阅读 · 0 评论 -
数字图像处理(10): OpenCV 图像阈值化处理
目录1 什么是阈值化-threshold()2 二进制阈值化3 反二进制阈值化4 截断阈值化5 反阈值化为06 阈值化为07 小结参考资料1 什么是阈值化-threshold()图像的二值化或阈值化 (Binarization)旨在提取图像中的目标物体,将背景以及噪声区分开来。通常会设定一个阈值,通过阈值将图像的像素划分为两类:大于阈值的...原创 2019-04-26 23:50:29 · 8334 阅读 · 0 评论 -
数字图像处理(4): 遥感影像中 光谱分辨率、空间分辨率、时间分辨率、全色图像、多光谱图像、高光谱图像 的区别
目录1 光谱分辨率、空间分辨率、时间分辨率2 全色图像、多光谱图像、高光谱图像2.1 全色图像2.2 多光谱图像2.3 高光谱图像参考资料1 光谱分辨率、空间分辨率、时间分辨率遥感(Remote Sensing),可以理解为遥远的感知。遥感技术利用搭载在遥感平台上面的传感器对目标地物发射或反射的电磁波信息记录下来从而形成遥感影像(或其他遥感数据)。其中分辨率作为...原创 2019-04-22 21:50:19 · 63917 阅读 · 3 评论 -
数字图像处理(5): Python下 初步使用OpenCV (基础用法)
目录1 使用OpenCV读写图像2OpenCV像素处理参考资料最近看到一位博主,写了很多关于 Python图像处理的系列博客,发现这位博主写的很有意思,于是就跟着它的博客去做了实验,还挺好玩的。然后根据他的博客,整理了一下我做的一些实验,方便后期查阅。1 使用OpenCV读写图像我是在Python3.6和OpenCV进行操作,首先安装Anaconda和Py...原创 2019-04-23 21:44:38 · 5097 阅读 · 2 评论