计算机位运算


计算机与二进制


计算机在处理数据时使用的是2进制计数法

从10进制计数法类推,便可很快掌握它的规则。使用的数字只有0、1,共2种。从右往左分别表示1位、2位、4位、8位。用2进制计数法来数数,首先是0,然后是1,接下去···不是2,而是在1上面进位变成10,继而是11,100,101……

10进制2进制10进制2进制10进制2进制10进制2进制
0020101004010100060111100
1121101014110100161111101
21022101104210101062111110
31123101114310101163111111
4100241100044101100641000000
5101251100145101101651000001
6110261101046101110661000010
7111271101147101111671000011
81000281110048110000681000100
91001291110149110001691000101
101010301111050110010701000110
111010311111151110011711000111
1211003210000052110100721001000
1311013310000153110101731001001
1411103410001054110110741001010
1511113510001155110111751001011
16100003610010056110111761001100
17100013710010157111001771001101
18100103810011058111010781001110
19100113910011159111011791001111

二进制由来

1678年,德国著名数学家布莱尼茨发明了计算机,为了满足计算机的需要,他引入了二进制。二进制是最为简单的进位制,仅有1和0两个基本符号,运用二进制,逢2进1,与其他进位制相比较,同样一个数,二进制位数比较多。

例如:十进制的2对应二进制的10;十进制的4对应二进制的100;十进制的5对应二进制的101;十进制的10对应二进制的1010;十进制的37对应二进制的100101等等。

用二进制表示的数字,虽然位数比较多,看起来还不够直观,但计算时却非常简单,其加法和乘法公式分别仅有4条,而十进制中相应的公式则有100多条。二进制的加法公式为:
1+1=10, 1+0=1, 0+1= 1,0+0= 0;乘法公式为1x1=1,0x0=0,0x1=0,1x0=0。

从以上的介绍可以看出,二进制的符号较少,运算较简单,所以莱布尼茨在自己发明的计算机上就采用了二进制。现在的计算机上依然采用二进制,除了上述原因,另外一种原因是,在计算机上,两种截然相反状态的现象是大量存在的,比如电路的通电与断电,电容器的充电与放电等,这些均可以用二进制的两个符号1和0 来表示。例如计算机电路的接通用1表示,断开用0表示。


原码,反码,补码


机器数和真值

在学习原码, 反码和补码之前, 需要先了解机器数和真值的概念.

机器数

一个数在计算机中的二进制表示形式, 叫做这个数的机器数。机器数是带符号的,在计算机用一个数的最高位存放符号, 正数为 0, 负数为 1.

比如,十进制中的数 +3,计算机字长为 8 位,转换成二进制就是 00000011。如果是 -3,就是 10000011。

那么,这里的 00000011 和 10000011 就是机器数。

真值

因为第一位是符号位,所以机器数的形式值就不等于真正的数值。例如上面的有符号数 10000011,其最高位 1 代表负,其真正数值是 -3 而不是形式值 131(10000011 转换成十进制等于 131)。所以,为区别起见,将带符号位的机器数对应的真正数值称为机器数的真值。

例:0000 0001 的真值 = +000 0001 = +1,1000 0001 的真值 = –000 0001 = –1


原码, 反码, 补码的基础概念和计算方法


在探求为何机器要使用补码之前, 让我们先了解原码, 反码和补码的概念. 对于一个数, 计算机要使用一定的编码方式进行存储. 原码, 反码, 补码是机器存储一个具体数字的编码方式.

1. 原码

原码就是符号位加上真值的绝对值, 即用第一位表示符号, 其余位表示值. 比如如果是 8 位二进制:

[+1] 原 = 0000 0001

[-1] 原 = 1000 0001

第一位是符号位. 因为第一位是符号位, 所以 8 位二进制数的取值范围就是:

[1111 1111 , 0111 1111]

[-127 , 127]

原码是人脑最容易理解和计算的表示方式.

2. 反码

反码的表示方法是:

正数的反码是其本身

负数的反码是在其原码的基础上, 符号位不变,其余各个位取反.

[+1] = [00000001] 原 = [00000001] 反

[-1] = [10000001] 原 = [11111110] 反

可见如果一个反码表示的是负数, 人脑无法直观的看出来它的数值. 通常要将其转换成原码再计算.

3. 补码

补码的表示方法是:

正数的补码就是其本身

负数的补码是在其原码的基础上, 符号位不变, 其余各位取反, 最后 + 1. (即在反码的基础上 + 1)

[+1] = [00000001] 原 = [00000001] 反 = [00000001] 补

[-1] = [10000001] 原 = [11111110] 反 = [11111111] 补

对于负数, 补码表示方式也是人脑无法直观看出其数值的. 通常也需要转换成原码在计算其数值.

三. 为何要使用原码, 反码和补码

在开始深入学习前, 我的学习建议是先 " 死记硬背 " 上面的原码, 反码和补码的表示方式以及计算方法.

现在我们知道了计算机可以有三种编码方式表示一个数. 对于正数因为三种编码方式的结果都相同:

[+1] = [00000001] 原 = [00000001] 反 = [00000001] 补

所以不需要过多解释. 但是对于负数:

[-1] = [10000001] 原 = [11111110] 反 = [11111111] 补

可见原码, 反码和补码是完全不同的. 既然原码才是被人脑直接识别并用于计算表示方式, 为何还会有反码和补码呢?

首先, 因为人脑可以知道第一位是符号位, 在计算的时候我们会根据符号位, 选择对真值区域的加减. (真值的概念在本文最开头). 但是对于计算机, 加减乘数已经是最基础的运算, 要设计的尽量简单. 计算机辨别 " 符号位 " 显然会让计算机的基础电路设计变得十分复杂! 于是人们想出了将符号位也参与运算的方法. 我们知道, 根据运算法则减去一个正数等于加上一个负数, 即: 1-1 = 1 + (-1) = 0 , 所以机器可以只有加法而没有减法, 这样计算机运算的设计就更简单了.

于是人们开始探索 将符号位参与运算, 并且只保留加法的方法. 首先来看原码:

计算十进制的表达式: 1-1=0

1 - 1 = 1 + (-1) = [00000001] 原 + [10000001] 原 = [10000010] 原 = -2

如果用原码表示, 让符号位也参与计算, 显然对于减法来说, 结果是不正确的. 这也就是为何计算机内部不使用原码表示一个数.

为了解决原码做减法的问题, 出现了反码:

计算十进制的表达式: 1-1=0

1 - 1 = 1 + (-1) = [0000 0001] 原 + [1000 0001] 原 = [0000 0001] 反 + [1111 1110] 反 = [1111 1111] 反 = [1000 0000] 原 = -0

发现用反码计算减法, 结果的真值部分是正确的. 而唯一的问题其实就出现在 “0” 这个特殊的数值上. 虽然人们理解上 + 0 和 - 0 是一样的, 但是 0 带符号是没有任何意义的. 而且会有 [0000 0000] 原和 [1000 0000] 原两个编码表示 0.

于是补码的出现, 解决了 0 的符号以及两个编码的问题:

1-1 = 1 + (-1) = [0000 0001] 原 + [1000 0001] 原 = [0000 0001] 补 + [1111 1111] 补 = [0000 0000] 补 =[0000 0000] 原

这样 0 用 [0000 0000] 表示, 而以前出现问题的 - 0 则不存在了. 而且可以用 [1000 0000] 表示 - 128:

(-1) + (-127) = [1000 0001] 原 + [1111 1111] 原 = [1111 1111] 补 + [1000 0001] 补 = [1000 0000] 补

-1-127 的结果应该是 - 128, 在用补码运算的结果中, [1000 0000] 补 就是 - 128. 但是注意因为实际上是使用以前的 - 0 的补码来表示 - 128, 所以 - 128 并没有原码和反码表示.(对 - 128 的补码表示 [1000 0000] 补算出来的原码是 [0000 0000] 原, 这是不正确的)

使用补码, 不仅仅修复了 0 的符号以及存在两个编码的问题, 而且还能够多表示一个最低数. 这就是为什么 8 位二进制, 使用原码或反码表示的范围为 [-127, +127], 而使用补码表示的范围为 [-128, 127].

因为机器使用补码, 所以对于编程中常用到的 32 位 int 类型, 可以表示范围是: [-231, 231-1] 因为第一位表示的是符号位. 而使用补码表示时又可以多保存一个最小值.

四 原码, 反码, 补码 再深入

计算机巧妙地把符号位参与运算, 并且将减法变成了加法, 背后蕴含了怎样的数学原理呢?

将钟表想象成是一个 1 位的 12 进制数. 如果当前时间是 6 点, 我希望将时间设置成 4 点, 需要怎么做呢? 我们可以:

  1. 往回拨 2 个小时: 6 - 2 = 4

  2. 往前拨 10 个小时: (6 + 10) mod 12 = 4

  3. 往前拨 10+12=22 个小时: (6+22) mod 12 =4

2,3 方法中的 mod 是指取模操作, 16 mod 12 =4 即用 16 除以 12 后的余数是 4.

所以钟表往回拨 (减法) 的结果可以用往前拨 (加法) 替代!

现在的焦点就落在了如何用一个正数, 来替代一个负数. 上面的例子我们能感觉出来一些端倪, 发现一些规律. 但是数学是严谨的. 不能靠感觉.

首先介绍一个数学中相关的概念: 同余

同余的概念

两个整数 a,b,若它们除以整数 m 所得的余数相等,则称 a,b 对于模 m 同余

记作 a ≡ b (mod m)

读作 a 与 b 关于模 m 同余。

举例说明:

4 mod 12 = 4

16 mod 12 = 4

28 mod 12 = 4

所以 4, 16, 28 关于模 12 同余.

负数取模

正数进行 mod 运算是很简单的. 但是负数呢?

下面是关于 mod 运算的数学定义:

上面是截图, " 取下界 " 符号找不到如何输入 (word 中粘贴过来后乱码). 下面是使用 “L” 和 “J” 替换上图的 " 取下界 " 符号:

x mod y = x - y L x / y J

上面公式的意思是:

x mod y 等于 x 减去 y 乘上 x 与 y 的商的下界.

以 -3 mod 2 举例:

-3 mod 2

= -3 - 2xL -3/2 J

= -3 - 2xL-1.5J

= -3 - 2x(-2)

= -3 + 4 = 1

所以:

(-2) mod 12 = 12-2=10

(-4) mod 12 = 12-4 = 8

(-5) mod 12 = 12 - 5 = 7

开始证明

再回到时钟的问题上:

回拨 2 小时 = 前拨 10 小时

回拨 4 小时 = 前拨 8 小时

回拨 5 小时 = 前拨 7 小时

注意, 这里发现的规律!

结合上面学到的同余的概念. 实际上:

(-2) mod 12 = 10

10 mod 12 = 10

-2 与 10 是同余的.

(-4) mod 12 = 8

8 mod 12 = 8

-4 与 8 是同余的.

距离成功越来越近了. 要实现用正数替代负数, 只需要运用同余数的两个定理:

反身性:

a ≡ a (mod m)

这个定理是很显而易见的.

线性运算定理:

如果 a ≡ b (mod m),c ≡ d (mod m) 那么:

(1)a ± c ≡ b ± d (mod m)

(2)a * c ≡ b * d (mod m)

如果想看这个定理的证明, 请看:http://baike.baidu.com/view/79282.htm

所以:

7 ≡ 7 (mod 12)

(-2) ≡ 10 (mod 12)

7 -2 ≡ 7 + 10 (mod 12)

现在我们为一个负数, 找到了它的正数同余数. 但是并不是 7-2 = 7+10, 而是 7 -2 ≡ 7 + 10 (mod 12) , 即计算结果的余数相等.

接下来回到二进制的问题上, 看一下: 2-1=1 的问题.

2-1=2+(-1) = [0000 0010] 原 + [1000 0001] 原 = [0000 0010] 反 + [1111 1110] 反

先到这一步, -1 的反码表示是 1111 1110. 如果这里将 [1111 1110] 认为是原码, 则 [1111 1110] 原 = -126, 这里将符号位除去, 即认为是 126.

发现有如下规律:

(-1) mod 127 = 126

126 mod 127 = 126

即:

(-1) ≡ 126 (mod 127)

2-1 ≡ 2+126 (mod 127)

2-1 与 2+126 的余数结果是相同的! 而这个余数, 正式我们的期望的计算结果: 2-1=1

所以说一个数的反码, 实际上是这个数对于一个膜的同余数. 而这个膜并不是我们的二进制, 而是所能表示的最大值! 这就和钟表一样, 转了一圈后总能找到在可表示范围内的一个正确的数值!

而 2+126 很显然相当于钟表转过了一轮, 而因为符号位是参与计算的, 正好和溢出的最高位形成正确的运算结果.

既然反码可以将减法变成加法, 那么现在计算机使用的补码呢? 为什么在反码的基础上加 1, 还能得到正确的结果?

2-1=2+(-1) = [0000 0010] 原 + [1000 0001] 原 = [0000 0010] 补 + [1111 1111] 补

如果把 [1111 1111] 当成原码, 去除符号位, 则:

[0111 1111] 原 = 127

其实, 在反码的基础上 + 1, 只是相当于增加了膜的值:

(-1) mod 128 = 127

127 mod 128 = 127

2-1 ≡ 2+127 (mod 128)

此时, 表盘相当于每 128 个刻度转一轮. 所以用补码表示的运算结果最小值和最大值应该是 [-128, 128].

但是由于 0 的特殊情况, 没有办法表示 128, 所以补码的取值范围是 [-128, 127]

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值