ICLR 2022初审你得了多少分?平均4.93浮动,预测6分才被接收

视学算法报道

编辑:杜伟、陈萍

晒出自己的分数吧!

深度学习顶会 ICLR 2022(第十届)将于明年 4 月 25 日至 29 日线上举行。论文提交已于上月 6 日截止,根据此前官网发布的数据,本届会议共收到了 3407 篇投稿,比去年增加了 400 多篇。

今日,ICLR 2022 官方放出了论文初审结果。

热衷于顶会数据挖掘的 Criteo AI Lab 机器学习科学家 Sergey Ivanov 对本届 ICLR 投稿的得分情况进行了整理。

首先,本届会议共接收了 3325 篇有效投稿,给出了 12981 个评论。

72f3cb115839a239b29472554643519a.png

完整投稿得分列表请戳:https://docs.google.com/spreadsheets/d/1Fdop2Byzhxx5gKI4YZXqq_L-akDG8GwdGMqb_4IbS38/edit#gid=232519225

其次,ICLR 2022 投稿的平均分为 4.93(+- 1.15) ,作为对比,ICLR 2021 rebuttal 后的平均分为 5.37( +- 0.96)。数据显示,31 篇投稿的平均分为 8 分,39 篇投稿得到最高分 10 分,没有 1 篇投稿得到两个以上的 10 分。

472db2a6630c11b9f8868e9b35071e48.png

下图为 31 篇平均分 8 分的投稿以及它们的具体得分情况。

c772f710a5d96b02443f8856de61deae.png

最后,ICLR 2022 投稿的平均置信度分数为 3.69(+- 0.45) 。

c67d529b4ad9cd6c3140b6d269f560f2.png

ICLR 2022 审稿结果出来了,该如何做?

论文产出不容易,想必此前投 ICLR 2022 会议的小伙伴都在等待初审结果。现在结果终于出来了,你的论文得了多少分呢?在讨论得分之前,首先我们先要感谢 Sergey Ivanov 的对评审结果的整理。

c0fdf65ce9351b5b71d31b280266538b.png

有知乎网友表示,自己的论文得分为「8,6,6,3」,其中有一项得分为 3 分的原因是自己没有引用综述,并且论文所提方法太一般。

0650f7bc6a4197f56c0e78a47ba57794.png

还有网友从得分结果总结出经验,认为论文全部使用大写标题与获得低分之间存在显着相关性。

b5a915a88ce7d4b768132ebfeb2657ed.png

对于获得多少分才能被 ICLR 2022 会议接收?Sergey Ivanov 给出了自己的预测,他表示,「如果录取率与 2021 年保持一致——29%,则平均分 6 分左右才有可能被会议接收。」

所以,对自己的初审分数不满意的小伙伴,根据评审意见努力修改并 rebuttal 吧。就算有得 1 分的小伙伴,使使劲,可能还有翻盘的机会。

不同研究方向,投稿趋势

除了评审结果外,大家比较关注的可能就是投稿趋势了。此前在 GitHub 上一个名为 ICLR2022-OpenReviewData 的项目爬取了 ICLR 2022 的所有投稿论文。结果表明热度前 50 的投稿关键词中,强化学习、深度学习、图神经网络排在前三位,从统计结果可以看出,强化学习和深度学习的投稿数量远超其他领域。

23d385676f6374d71e1fe448e065a4ef.png

关键词云提交的关键词形成的词云展示了热点话题,包括深度学习、强化学习、图神经网络等。

5ee8ba784e60b77d57dc6016cbc25092.png

通过对标题关键词出现的频率进行分析,论文作者更喜欢用表示(representation)这个词,其次是强化(reinforcement),第三名是图(graph),这三个词出现的频率几乎相当。

bec3ef172eaa053e3133fe08f50ef365.png

参考链接:

https://guoqiangwei.xyz/htmls/iclr2022_stats.html

https://github.com/EdisonLeeeee/ICLR2022-OpenReviewData

https://twitter.com/SergeyI49013776/status/1458018709847560193

https://www.reddit.com/r/MachineLearning/comments/qq5c51/d_iclr2022_review_stats/

© THE END 

转载请联系机器之心公众号获得授权

投稿或寻求报道:content@jiqizhixin.com

cbcde67239a95d6cd2acc056b374d665.png

outside_default.png

点个在看 paper不断!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值