自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(22)
  • 收藏
  • 关注

原创 Matplotlib入门笔记

同类有很多外来的画图包(基于R的ggplot2,一些从JavaScript前端移植到py的包),他们在py中相对独立。4、Artist:整个(输出)图像的所有内容,每个都是一个artist,即一个artist python对象。最后,请直接面向目标学习,matplotlib等包,需要在实战中摸索,抓住主线,而不是系统性从头到尾的学习。2、改变全局参数(如设置支持中文的字体,图片像素、背景、默认大小尺寸等。1、导入包,设置风格(default、ggplot等风格)3、画图代码的函数化(以提高复用能力)

2024-09-04 19:23:34 666

原创 win10 / win11 永久暂停自动更新方法

选择延长500周,估计你电脑的寿命差不多就够了,当然你可以多选一点。之后你会看到上方更新时间变得非常久,如果你想真的几百年不更新(前提你电脑还在),就把注册表数值改大一点即可。然后在对话框右测,右键->单击新建Dword(32位值)。双击新建的注册表,就新的你刚刚创建的那个文件,会弹出如下对话框,进行修改,注意,最好跟上图改的一模一样!打开运行窗口输入regedit打开注册表。step2:按照以下顺序打开相应文件夹。现在进入你电脑Windows的设置中。

2024-08-15 11:08:33 527

原创 Missing-semester-hw shell

chmod就是用来修改文件访问权限的。这是因为linux为r/w/x分配了各自的数字4/2/1,当组合不同时,数字之和不会重复,故可以用一个三位数来实现便捷权限修改。当然可以用字母参数来实现,是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹配的行打印出来。用于过滤/搜索的特定字符。可使用正则表达式能多种命令配合使用,使用上十分灵活。r/w/x代表读、写和执行。ls -l查询后的10位,分为1/3/3/3。第一个表示文件属性,后面三组每组三个字符代表所有者、群组用户、其他用户对这个文件的权限。

2024-08-14 23:19:37 281

原创 VsCode进行html编辑时,!无法唤出html基本框架补全的问题

新版本vscode中需要输入“html:5”+tab进行补全。

2024-08-14 09:50:59 265

原创 jupyter notebook 魔术指令执行报错 No module named ‘ipympl‘

打开anaconda prompt(右键“以管理员身份运行”)在重启jupyter notebook即可解决。

2024-07-24 10:47:05 143

原创 Jupyter notebook 快速入门

Jupyter Notebook是一个交互式笔记本环境,可以在其中同时编写和运行代码,以及进行数据分析和可视化。它支持多种编程语言(如Python、R、Julia等),并提供了丰富的功能和工具供用户使用。Jupyter Notebook具有可视化界面,用户可以通过浏览器访问,并通过单元格的方式组织代码和文本。用户可以在每个单元格中编写和运行代码,查看代码执行结果,并将代码、文本和图形整合在一起形成一个完整的文档。

2024-07-23 22:50:55 704

原创 算法基础——动态规划(3)背包 多重背包(每个物品可重复选,有次数限制)

与完全背包不同的点在,首先,其次,空间优化成一个数组时,完全背包只需要当前target的上一组状态,而多重背包需要当前target及其之前的数的上一组状态。本题对于时间优化的要求极为严苛,如果用常规多重背包,是过不了的(尽管下方代码已经做了一个小优化,让时间近乎减半)。依旧是上一轮的旧值,对应原方程中的f[i−1][j−(c[x]+1)∗x]由于是倒序遍历,此时的f[j−(c[x]+1)∗x]还未被更新,优化二有更简单的理解,建立在优化一的基础之上,是本轮的新值,对应原方程中的f[i][j−x]

2024-05-30 22:42:18 532

原创 算法基础——动态规划(3)背包 完全背包(每个物品可以重复选)

最开始考虑成选几个或不选的情况,这样写超时。只需要考虑选或不选这个数一次,选的话i(当前选择的数)不变,只是改变剩下需要凑的数值。空间优化到一个数组时,可以注意一下不变的位置和变得位置,从会变的位置开始修改可以减少if,else判断语句。Solution1:递归+备忘录。相对于上一题改动递推式为+即可。Solution3:空间优化。Solution2:递推。

2024-05-29 11:01:15 218

原创 算法基础——动态规划(2)网格图DP(基础)

它利用了堆数据结构的特性,可以在 O(n log k) 时间复杂度内完成操作,其中 n 是可迭代对象的元素数量,k 是要求的最小元素数量。其中树的层数代表做选择的次数,本题中任意方法选择次数相等,均为m(行数)+n(列数)次,故有m+n层,空间(递归的栈空间)用到m+n。当然注意到数字都是正数,可以直接在原来数字上乘以负一来标记入队,每列遍历本列入队(标记)的可以移动到的元素,可以节省空间O(1)可以用两个数组记录,can记录当前判断行能被移动到的元素,tes在判断中记录下一行可以移动到的元素。

2024-05-18 23:19:08 536

原创 算法基础——动态规划(1)(爬楼梯)

自顶向下变自底向上:递归边界变为数组初始值;dfs函数状态转移方程变为f数组状态计算方程;递归改为循环。

2024-05-15 11:36:58 362 1

原创 算法基础——回溯(1)

回溯算法中的循环,对应遍历树结构一层节点的横向进程,而递归相当于纵向进程明白算法中设计的递归函数,循环结构的不变性很关键(完成什么样的相似的任务)回溯法三部曲1、递归函数的返回值以及参数2、回溯函数终止条件3、单层搜索的过程对于回溯题目,有时可以进行减枝优化。

2024-05-08 11:30:48 688 1

原创 算法基础——哈希表

在c++中,由于可以用数组、set、map来做哈希表,故要考虑各自特性。而python中,主要使用的就是数组和字典。对于效率而言,一定要熟悉自己使用语言对这些结构的底层实现,才能更好的运用。数组数组是定长的,并且键是隐藏的下标索引,故适用于已经知道长度和对下标映射的,如242.有效的字母异位词和383.赎金信。字典而对于349. 两个数组的交集1.两数之和202.快乐数这种没有限制大小的、数值跨度太大,就不能用数组了(除非你自己设计映射规则和冲突规则,构建hash)而。

2024-04-29 16:16:11 804

原创 李沐深度学习预备知识——微积分

在每个批次中,样本会被送入网络进行前向传播和反向传播,然后使用批次内的样本计算出平均损失值,并利用该损失值来更新网络的参数。批次大小(即每个批次中包含的样本数量)是一个超参数,可以根据数据集的大小和计算资源的限制进行调整。加入矩阵变换的微分,n*m矩阵,相当于多个方程求微分,故得到1xm的结果,每列为对应方程微分。上图最后一行,对于矩阵求偏导,实际上是对矩阵每个位置分别求偏导再放到原位上构成新的偏导矩阵。多元函数视作是输入向量得到标量的函数,而对所有输入的元的梯度,可以简化写法如上。

2024-04-28 22:00:00 1954 1

原创 算法基础——数组

在内存中是存储在不同的位置上的,而不是挨着存储的。列表的元素可以是不同类型的对象,所以它们可能会占据不同大小的内存空间。然后,它使用插入排序将这些run进行排序,然后使用合并排序将排好序的run合并在一起,直到整个列表都被排序。在滑动窗口解法中,循环不变量(维持的窗口)是以right为右端点的满足条件的最小的子数组窗口(除了不存在情况)。在内存中是通过连续的内存块存储的,并且列表对象包含对第一个元素的引用,以及每个元素的地址偏移量。在Python的列表中,使用下标索引一个元素的时间复杂度是O(1)。

2024-04-24 11:28:08 817 1

原创 Python内置函数——enumerate()

列表组合为一个索引序列,然后在每次迭代时返回索引和对应的元素。这样可以方便地同时获取索引和元素,避免了手动维护一个计数器的麻烦。是 Python 的一个内置函数,用于将可迭代对象(如列表、字符串、元组等)变为一个索引序列(是可选参数,用于指定索引的起始值,默认为 0。),同时返回索引和对应的元素。是要遍历的可迭代对象,

2024-04-19 16:27:03 162 1

原创 李沐深度学习预备知识——线性代数

用只有一个元素的张量表示。

2024-04-19 15:50:52 927 1

原创 李沐深度学习预备知识——数据预处理

本小节使用pandas,若未安装,通过pip install pandas添加。

2024-04-17 16:42:30 853 1

原创 李沐深度学习预备知识——数据操作

深度学习中参数较多,并在一秒内多次更新所有参数,此时希望能够在原地址更新以防内存占用。并且如果不原地更新,其他的引用对象仍然会指向原位置,容易造成使用未更新的老参数,故了解tensor的内存机制很重要。若张量形状不同,则两张量的运算会先各自适当自我复制元素来扩展,两张量都完成扩展后再按元素相加。大小为1的tensor张量可以容易的以item函数或py内置函数转换成py的标量。Numpy的ndarray与pytroch的tensor可以容易的转换。与任何其他的python索引一致,故略。

2024-04-17 10:18:42 1126 1

原创 李沐深度学习引言笔记

参考知乎文章。

2024-04-14 15:04:04 848

原创 2024阿里巴巴数学

对每一个中心对称凸体 C C ,都有一个相应的椭球 E^* E ∗ 满足, E^*subseteq Csubseteq sqrt {n}E^* E ∗ ⊆ C ⊆ nE ∗。Löwner-John 定理。

2024-04-13 14:50:49 1297

原创 可解释性机器学习——从金融科技视角(2)

解释方法的分类

2024-03-30 12:38:18 921 1

原创 可解释性机器学习——从金融科技视角(1)

可解释性机器学习的重要性

2024-03-29 20:40:01 1096

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除