剑指Offer题目
斐波那契数列
题目描述
【剑指Offer 7】大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0)。
【剑指Offer 8】一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。
思路
斐波那切数列 :0 ,1,1,2,3,5,8,13...这样的数列称为斐波那契数列
斐波那切数列的应用:
- 跳台阶: 一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法
- 兔子繁殖:一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔子都不死,那么一年以后可以繁殖多少对兔子?
代码:
package com.my.test.codinginterviews.other;
/**
*
* [剑指Offer-7]斐波那切数列 :0 ,1,1,2,3,5,8,13...这样的数列称为斐波那契数列
*
* [剑指Offer-8]跳台阶: 一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法
*
* 兔子繁殖:一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔子都不死,那么一年以后可以繁殖多少对兔子?
*
*/
public class Fibonacci
{
/**
* n = 0 时 f(n) = 0
* n = 1时 f(n) = 1
*
* n > 1时,f(n) = f(n-1) + f(n-2)
*
* 求f(n)
*/
/**
* 递归解法
*/
public static int fibonacci(int n) {
if (n == 0 || n == 1) {
return n;
}
return fibonacci(n-1) + fibonacci(n-2);
}
/**
* 非递归解法
*/
public static int fibonacciII(int n) {
if (n == 0 || n == 1) {
return n;
}
// 缓存 三个值来实现
int f1 = 0;
int f2 = 1;
int sum_n = 0;
for (int i = 2; i <= n; i++) {
sum_n = f1 + f2;
f1 = f2;
f2 = sum_n;
}
return sum_n;
}
/**
*
* 题目描述:
* 一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法
* 思路:
* 得到n个台阶,一共可以跳多少个2步,这个也是一个斐波那契数列的一个应用。
* 对于本题前提只有一次跳一阶,和跳两阶。
* 如果两种跳法,1阶或者2阶,那么假定第一次跳的是一阶,那么剩下的是n-1个台阶,跳法是f(n - 1)
* 假定第一次跳的是2阶,那么剩下的是n-2个台阶,跳法是f(n - 2)那么这个时候就能够得到总的跳法为 f(n) = f(n - 1) + f(n - 2),
* 然后这个出口就是:只有一阶的时候f(1) = 1, 只有两阶的时候f(2) = 2;
*/
public static int jumpFloor(int n) {
if (n == 1 || n == 2) {
return n;
}
return jumpFloor(n-1) + jumpFloor(n-2);
}
public static int jumpFloorII(int n) {
if (n == 1 || n == 2) {
return n;
}
// 三个指针来实现
int f1 = 1;
int f2 = 2;
int cur = 0;
for (int i=3; i<=n; i++) {
cur = f1 + f2;
f1 = f2;
f2 = cur;
}
return cur;
}
/**
* 斐波那契数列又因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”。
* 一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔子都不死,那么一年以后可以繁殖多少对兔子?
* 我们不妨拿新出生的一对小兔子分析一下:
* 第一个月小兔子没有繁殖能力,所以还是一对
* 两个月后,生下一对小兔对数共有两对
* 三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对
* ------
* 依次类推
* 幼仔对数=前月成兔对数
* 成兔对数=前月成兔对数+前月幼仔对数
* 总体对数=本月成兔对数+本月幼仔对数
* 总体对数变化为: 1 1 2 3 5 8 13 21 34 55 89 144
* 可以看出幼仔对数、成兔对数、总体对数都构成了一个数列。这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。
*
*/
public static int rabbitCount(int n) {
if (n == 1 || n == 2) {
return 1;
}
return rabbitCount(n-1) + rabbitCount(n-2);
}
public static int rabbitCountII(int n) {
if (n == 1 || n == 2) {
return 1;
}
// 三个指针来实现
int f1 = 1;
int f2 = 1;
int cur = 0;
for (int i=3; i<=n; i++) {
cur = f1 + f2;
f1 = f2;
f2 = cur;
}
return cur;
}
public static void main(String[] args)
{
// 斐波那契数列f(6)
System.out.println("Fibonacci(6): " + fibonacci(6) + " <-> " + fibonacciII(6));
// 跳到第6层台阶,有多少种跳法
System.out.println("JumpFloor(6): " + jumpFloor(6) + " <-> " + jumpFloorII(6));
// 一年后兔子的数量
System.out.println("RabbitCount(12): " + rabbitCount(12) + " <-> " + rabbitCountII(12));
}
}