0.1 + 0.2 =?
0.1 + 0.2 = 0.3?
我们先来看一段 JS。
console.log( 0.1+ 0.2);
输出为 0.30000000000000004。
其实对于浮点数的四则运算,几乎所有的编程语言都会有类似精度误差的问题,只不过在 C++/C#/Java 这些语言中已经封装好了方法来避免精度的问题,而 JavaScript 是一门弱类型的语言,从设计思想上就没有对浮点数有个严格的数据类型,所以精度误差的问题就显得格外突出。下面就分析下为什么会有这个精度误差,以及怎样修复这个误差。
首先,我们要站在计算机的角度思考 0.1 + 0.2 这个看似小儿科的问题。我们知道,能被计算机读懂的是二进制,而不是十进制,所以我们先把 0.1 和 0.2 转换成二进制看看:
0.1 => 0.0001 1001 1001 1001…(无限循环)
0.2 => 0.0011 0011 0011 0011…(无限循环)
上面我们发现0.1和0.2转化为二进制之后,变成了一个无限循环的数字,这在现实生活中,无限循环我们可以理解,但计算机是不允许无限循环的,对于无限循环的小数,计算机会进行舍入处理。进行双精度浮点数的小数部分最多支持 52 位,所以两者相加之后得到这么一串 0.0100110011001100110011001100110011001100110011001100 因浮点数小数位的限制而截断的二进制数字,这时候,我们再把它转换为十进制,就成了 0.30000000000000004。
知道了浮点数产生的原因了,那么怎么处理这个问题呢?
方法一:指定要保留的小数位数(0.1+0.2).toFixed(1) = 0.3;这个方法toFixed是进行四舍五入的也不是很精准,对于计算金额这种严谨的问题,不推荐使用,而且不通浏览器对toFixed的计算结果也存在差异。
方法二:把需要计算的数字升级(乘以10的n次幂)成计算机能够精确识别的整数,等计算完毕再降级(除以10的n次幂),这是大部分编程语言处理精度差异的通用方法。
function getLen(value){ //小数位最长长度
var len=0;
var value=value.toString();
if(value.indexOf(".")!=-1){
len=value.split(".")[1].length;
}
return len;
}
function add(value1,value2){
//解决小数精度问题
var len=Math.max(getLen(value1),getLen(value2));
var h=Math.pow(10,len);
return (value1*h+value2*h)/h;
}
function sum(){
var args=arguments;
var sum=0;
for(var i=0;i<arguments.length;i++){
if(/^(\')?\d(\')?/.test(args[i])){
sum=add(sum,new Number(args[i]));
}
}
return sum;
}