BZOJ2301【HAOI2011】Problem b

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2301


【分析】

    这题用的是莫比乌斯反演,于是乎蒟蒻去看PoPoQQQ大神的PPT学了一下莫比乌斯反演。

    将问题转化为1<=x<=n,1<=y<=m且gcd(x,y)=k的数对个数,然后容斥一下。

    设f(i)表示gcd(x,y)=i的数对个数,F(i)表示i|gcd(x,y)的数对个数,则有

    然后就可以得到

    由于[n/d]的取值只有2√n个(当d<=√n时[n/d]有√n个取值;当d>√n时[n/d]<=√n也只有√n个取值),于是可以将每次计算的复杂度降为√n。

    时限是足够用的......


【代码】

#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn=50010;

int Prime[maxn],NotPrime[maxn],mu[maxn],sum[maxn];
int a,b,c,d,k,T;

void Get_MU()
{
	int cnt=0;
	mu[1]=1;
	for (int i=2;i<=maxn;i++)
	{
		if (!NotPrime[i]) {Prime[cnt++]=i;mu[i]=-1;}
		for (int j=0;j<cnt && Prime[j]*i<=maxn;j++)
		{
			NotPrime[i*Prime[j]]=1;
			if (i%Prime[j]==0) break;
			mu[i*Prime[j]]=-mu[i];
		}
	}
	for (int i=1;i<=maxn;i++) sum[i]=sum[i-1]+mu[i];
}

int Calc(int n,int m)
{
	int ans=0,pos;
	if (n>m) swap(n,m);
	for (int i=1;i<=n;i=pos+1)
	{
		pos=min(n/(n/i),m/(m/i));
		ans+=(sum[pos]-sum[i-1])*(n/i)*(m/i);
	}
	return ans;
}

int main()
{
	Get_MU();
	scanf("%d",&T);
	while (T--)
	{
		scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);a--;c--;
		a/=k;b/=k;c/=k;d/=k;
		printf("%d\n",Calc(b,d)+Calc(a,c)-Calc(a,d)-Calc(b,c));
	}
	return 0;
}


发布了23 篇原创文章 · 获赞 3 · 访问量 1万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览