什么叫网络抖动

网络抖动:
网上说法是指网络中的延迟是指信息从发送到接收经过的延迟时间,一般由传输延迟及处理延迟组成;
而抖动是指最大延迟与最小延迟的时间差,如最大延迟是20毫秒,最小延迟为5毫秒,那么网络抖动就是15毫秒,
它主要标识一个网络的稳定性。

但是个人从直观表现上看指的是每两个相邻的数据包接收时的时间间隔之差,比如第一个数据包的与第二个数据包到达的时间差是20ms,可能第三个包和第二个包的时间差是5ms,
那么网络抖动就是15ms。

 

t表示一个个的数据包的序号,y表示相邻两个数据包到达的时间差值,从上图可知y的值是一直没有变化(也就是时间差值相同),这就是理想的网络质量,网络抖动为0。

 

实际的网络质量如上图,相邻两个数据包到达的时间差值都不相同,那么波峰H假设20ms,波谷D为5ms,那么网络抖动就是20 - 5 = 15ms。

网络抖动对视频的影响:
视频的显示是通过渲染来实现的,如果提供给渲染的数据包时慢时快,那么渲染显示的效果也是时快时慢,这样视频看起来就又可能忽然快忽然慢,或者看起来一卡一顿似的。

jitter buffer解决网络抖动给视频带来影响的原理:
通过计算网络延迟来知道网络抖动的大小,这样设置合适的缓冲区大小用来存储接收到的数据包。假设一开始网络抖动过大,这时我们
创建一块buffer用来接收数据,但不及时的送去给解码处理或者渲染处理,而是等待网络抖动大小设置的延迟时间到了才把buffer里的数据提供给解码或者渲染。
这块buffer里含有多个视频帧数据,这样解码器从buffer里获得的数据就是时间连续的,这样就不会出现视频忽快忽慢的情况,而是看起来很平滑顺畅。但是可以看出使用jitter buffer,渲染的视频就会和源视频有较大的延迟,这是不可避免的。
————————————————
版权声明:本文为CSDN博主「雨夜和阳晨」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_42717961/article/details/106137187

神经网络中的loss抖动是指在训练过程中模型的损失函数出现波动性变化的现象。这种抖动可能导致模型性能的下降或训练过程的不稳定。 出现神经网络loss抖动的原因有多种。首先,可能是学习率设置不合理。学习率过大会导致模型在训练过程中跳过最优点,无法稳定地收敛;反之,学习率过小则可能导致训练过程缓慢甚至停滞不前。 其次,神经网络的模型复杂度和数据集的大小也会影响loss抖动。如果模型过于复杂而训练数据较少,模型很容易过拟合,导致loss抖动。解决这个问题的一个方法是增加训练数据或者减小模型复杂度。 此外,损失函数的选择和正则化方法也会对loss抖动产生影响。合适的损失函数能够更好地反映模型的预测误差,而正则化方法则可以减小过拟合风险。 最后,优化算法的选择也可能导致loss抖动。一些常见的优化算法如随机梯度下降(SGD)是基于随机采样的,容易产生梯度的方差过大从而导致loss抖动。可以尝试使用其他优化算法或者调整算法的超参数来解决这个问题。 为了降低神经网络中loss抖动的影响,可以采取以下措施:恰当地设置学习率、增加训练数据或减小模型复杂度、选择合适的损失函数和正则化方法、调整优化算法及超参数。通过这些方法的综合应用,可以提高神经网络的训练稳定性和泛化能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值