- 2015年5月19日,国务院正式印发《中国制造2025》。
- 2022年,多部委联合发布《智能制造试点示范行动实施方案》
- 工业和信息化部等八部门关于加快传统制造业转型升级的指导意见[工信部联规〔2023〕258号]
- 国家发展改革委、中央网信办联合印发了《关于推进“上云用数赋智”行动培育新经济发展实施方案》
1.2资金扶持
- “特色型、区域型工业互联网平台建设,500万元后补助;工业互联网标识解析二级节点建设,100万元后补助。制造业企业应用新一代信息技术建设智能应用场景,50万元奖励。”--------财政部《关于加强财税支持政策落实促进中小企业高质量发展的通知》
- “县级以上人民政府根据先进制造业发展需要和财力状况,统筹安排资金,支持企业采用新技术、新工艺、新设备、新材料,推动设备更新、工艺升级、数字赋能和管理创新。”--------山东省工业和信息化厅《山东省先进制造业促进条例》
- 央财政将对入选地级市(济宁市入选)给予1亿元奖补资金。其中:资金总额的80%主要用于开展中小企业数字化改造工作,20%主要用于支持工业互联网平台建设、数字化服务商培育。 ------财政部办公厅 工业和信息化部办公厅《关于做好2024年中小企业数字化转型城市试点工作的通知》
综上所述,政府在推动工业进行转型,特别是在工业物联网方面采取了一系列政策措施,旨在促进制造业的转型升级和高质量发展。这些政策包括制定相关的发展规划和行动方案,以及提供资金扶持和税收优惠等措施,以激励企业投资于物联网技术和解决方案。
1.3地缘优势
目前在联合国分类的41个工业大类中,我国是唯一一个41个大类齐全的国家,具有全面的工业体系和深厚的产业基础为工业信息化的发展提供了坚实的基础。
物联网(Internet of Things,IoT)在工业领域中,通常被称为工业物联网(IIoT),正在推动第四次工业革命,也称为工业4.0。工业物联网通过将传感器、机器学习算法、网络连接和数据分析集成到传统的工业过程中,实现了设备的智能化管理和维护,提高了生产效率,降低了运营成本,并开启了全新的商业模式。这一转型不仅重塑了工业生产模式,更推动了制造业向智能化、高效化、绿色化方向迈进,为国家经济的可持续发展注入了强劲动力的同时也开拓延伸出了系统集成公司的新赛道。
2.1.1工业物联网的关键变革
- 预测性维护:通过分析从设备传感器收集的数据,企业可以预测机器的潜在故障并在发生故障前进行维护,从而减少停机时间和维修成本。
- 优化运营:实时监控生产流程使企业能够识别并消除低效环节,优化资源分配,并提高整体产能。
- 自动化和机器人技术:智能机器人和自动化系统可以执行危险或重复的任务,提高工作场所的安全性和生产一致性。
- 供应链管理:通过追踪产品和原材料的流动,企业可以更有效地管理库存,降低过剩库存和缺货的风险。
- 能源管理:智能电表和能源管理系统可以帮助工业企业节约能源,降低成本,并促进可持续发展。
- 安全和合规性:通过监控工作环境和操作流程,企业可以确保遵守健康、安全和环境法规,并及时响应潜在风险。
工业物联网带来的关键变革
2.1.2工业物联网发挥的关键作用
- 设备自动化与智能化:物联网技术是的生产设备之间能够实现数据通信,构建起自动化、智能化的管理系统。通过PLC、数控机场、传感器、工业机器人等设备的互联互通,工厂能够实现对生产过程的精细化管理,提供生产效率,减少认为错误。例如:机械臂、焊接机器人、AGV小车等可以根据实时数据自动调整作业参数,确保生产过程的稳定性和高效性。
设备自动化与智能化
- 数据采集与分析:物联网结合大数据、云计算等技术,实现对生产过程的实时监控、数据采集和分析。这些数据不仅能够帮组企业掌握生产进度、设备运行状态等基本信息,通过数据分析发现潜在的生产瓶颈、预测设备故障等,为生产管理提供有力支持。例如:通过智能传感器收集到的设备振动、转速、温度等数据,可以运用机器学习算法进行故障预测,提前安排维护计划,避免非计划停机造成的损失。
传感器数据采集应用拓扑图
- 云计算与边缘计算:云计算和边缘计算技术的应用,进一步提升物联网在工业数字化转型中的效能。云计算为海量数据的存储、处理和分析提供强大的计算能力,而边缘计算则通过在网络边缘进行数据处理,降低数据传输延迟,提高系统响应速度。两则相结合,使的工业系统能够更加高效、实时地处理和分析数据,为企业决策提供更加准确、及时的依据。
云计算与边缘计算
- 工业物联网平台:工业互联网平台是物联网技术在工业领域的集中展现。通过构建可视化、可控制的工业互联网平台,实现设备、数据、应用等资源的共享和协同,促进产业链上下游企业的紧密合作。工业互联网平台不仅提升生产效率和协作能力,为企业提供创新服务模式和商业模式的机会。
工业物联网平台
2.1.3工业物联网应用领域与实例
工业物联网(IIoT)在多个行业中的应用正在推动这些行业的数字化转型,提升效率并创造新的价值。以下是一些关键的应用领域及其具体实例的详细介绍:
应用领域 |
实例 |
|
智能制造 |
自动化与控制 |
在制造业中,IIoT通过连接机器、控制系统和信息系统,实现生产流程的自动化和优化。传感器和执行器实时监控生产线状态,自动调整操作参数以提高效率和产量。 |
预测性维护 |
通过收集设备运行数据并进行分析,预测设备可能出现的故障,提前进行维护,从而减少意外停机时间。例如,麦肯锡的一项研究表明,预测性维护可以降低30%的维护成本和45%的停机时间。 |
|
质量监控 |
自动化的质量检测系统能够即时识别产品缺陷并进行调整,确保产品质量的一致性和高标准。 |
|
能源电力管理 |
智能电网 |
利用IIoT技术,智能电网可以实时监控和调节电力分配,提高能源使用效率,减少浪费。例如,传感器和数据分析帮助电网运营商优化电力分配,减少能源损耗。 |
远程监控 |
在石油和天然气领域,IIoT可以实现对钻井作业的实时监控和设备的预测性维护,提高安全性和可靠性。例如,有些能源公司利用IIoT监控风力涡轮机的数据,以提高性能和降低维护开支。 |
|
供应链与物流优化 |
实时跟踪 |
通过将传感器安装在货物上,物流公司可以实时跟踪货物的位置,优化库存管理,减少存储费用。例如,RFID标签和GPS传感器共同实现货物运输过程中的实时监控。 |
运输管理 |
利用IIoT设备,可以监测车辆的性能,并根据交通和天气情况优化行驶路线,从而提高运输效率和降低成本。例如,有些物流公司利用IIoT实时监控车队,并通过数据分析进行预测性维护和路线优化。 |
|
医疗保健 |
远程检测 |
IIoT技术使医疗提供者能够实时监测患者的健康状况,及时发现和处理紧急情况。例如,有些医疗机构利用IIoT实时监控患者的生命体征,改善治疗效果并降低医疗成本。 |
智能医院 |
在医院中部署IIoT设备,可以实现智能化的病房管理、药品追踪和设备维护,提高医疗服务的效率和质量。 |
|
农业与环保 |
精准农业 |
通过在农田中部署传感器,收集土壤湿度、温度和养分等数据,农民可以根据实时数据优化灌溉、施肥和播种等操作。这不仅提高了作物的产量和质量,还减少了资源浪费和环境污染。 |
牲畜管理 |
利用IIoT技术监控牲畜的健康状态和生长进度,及时调整饲养策略,有效预防疾病并提高养殖效率 |
|
环境检测 |
IIoT技术用于环境监测,可以实时采集空气质量、水质和土壤状况等数据,为环保部门提供准确的数据支持,及时采取治理措施。例如,在城市的重要节点安装空气质量监测仪,可以实时监测PM2.5、CO2等污染物的浓度,向公众发布空气质量预报和健康提示。 |
|
交通运输 |
智能交通系统 |
IIoT技术在城市交通管理系统中的应用,如实时交通监控、智能信号灯控制和公交调度优化等,显著提升了城市交通的效率和管理水平。例如,通过部署在交通路口的传感器和摄像头,可以实时收集交通流量信息,优化信号灯的配时方案,减少拥堵和事故发生率。 |