MepReduce架构及原理

本文详细介绍了MapReduce的定义、特点、适用场景以及不适合的情况。MapReduce是一种用于大规模数据处理的简单软件框架,具有易编程、良好扩展性、高容错性和适合离线处理的特点。文中以WordCount为例,阐述MapReduce的编程模型,包括Map和Reduce阶段的具体步骤,以及MapReduce的内部逻辑和架构。MapReduce架构包含Client、JobTracker、TaskTracker和Task四个部分,具备良好的容错性,确保任务在节点故障时仍能继续运行。
摘要由CSDN通过智能技术生成

1. MapReduce 定义
Hadoop中的MepReduce是一个使用简单的软件框架,基于它写出来的程序能运行在由上千个机器组成的大型集群上,并以一种可靠容错并行处理TB级别的数据集。

2.MepReduce特点
1)MepReduce易于编程
它简单的实现一些接口,就可以完成一个分布式程序。这个分布式程序可以分布到大量的廉价PC上运行。也就是说你写一个分布式程序就跟写一个简单的串行程序是一样的。
2)良好的扩展性
当你的计算机资源不能满足时,可以通过简单的增加机器来扩展它的计算能力。
3)高容错性
MepReduce的设计初衷就是能将程序分布到大量的廉价pc机上运行,这就要求它有很高的容错性。比如其中的一台机器挂了,它可以把上面的计算任务转移到另一个节点上运行,不至于这个任务运行失败。这个过程都是hadoop内部完成的。
4)适合PB级以上海量数据的离线处理
它适合离线处理而不适合在线处理。比如像毫秒级别的返回一个结果,MapReduce很难做到。
在有些场景下并不适合MapReduce来处理,如:
1.实时计算
MapReduce无法像MySql一样在毫秒或秒级内返回结果。
2.流式计算
流式计算的输入数据是动态的,而MapReduce的输入数据集是静态的,不能动态变化。这是因为MapReduce自身的设计特点决定了数据源必须是静态的。
3.DAG(有向图)计算
多个应用程序存在依赖关系,后一个应用程序的输入是前一个的输出。在这种情况下,每个MapReduce作业的输出结果都会写入磁盘,会造成大量的磁盘IO,导致性能十分低下。

3.MapReduce 实例
为了分析 MapReduce 的编程模型,这里我们以 WordCount 为实例。就像 Java、C++等编程语言的入门程序 hello word 一样,WordCount 是 MapReduce 最简单的入门程序。
下面我们就来逐步分析
1、场景:假如有大量的文件,里面存储的都是单词。
类似应用场景:WordCount 虽然很简单,但它是很多重要应用的模型。
1) 搜索引擎中,统计最流行的K个搜索词。
2) 统计搜索词频率,帮助优化搜索词提示。
2、任务:我们该如何统计每个单词出现的次数?
3、将问题规范为:有一批文件(规模为 TB 级或者 PB 级),如何统计这些文件中所有单词出现的次数。
4、解决方案:首先,分别统计每个文件中单词出现的次数;然后,累加不同文件中同一个单词出现次数。

4.MapReduce编程模型
通过上面的分析可知,它其实就是一个典型的 MapReduce 过程。下面我们通过示意图来分析 MapReduce 过程
这里写图片描述
上图的流程大概分为以下几步:
1.假设一个文件有三行英文单词作为 MapReduce 的Input(输入),这里经过 Splitting过程把文件分割为3块。分割后的3块数据就可以并行处理,每一块交给一个 map 线程处理。
2.每个map线程中,以每个单词作为key,以1作为value,之后输出。
3.输出的map要经过shuffling(混洗),将相同的单词key放在一个桶里,然后交给reduce进行处理。
4.reduce接收到sh

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值