CodeForces - 813C The Tag Game

题目链接:

CodeForces 813C

题意:

Alice和Bob玩游戏,Alice追Bob,路径是输入的指定树状图,Bob要尽可能地躲避Alice的追击,结束的标志是Bob和Alice在同一点相遇。

题解:

按照常情,我们在知道有人追我们的时候,我们会尽量往远处跑,那么这道题也不例外,我们要让Bob尽可能往距离他最远的地方跑,不过别光顾着跑,还要记录距离,什么距离?到起始点的距离.

不过,刚开始在做这道题的时候有考虑这样一种情况

A代表的是Alice的初始位置,一开始有想BFS,但是如果是B到与A的交叉点的距离比A到与B的交叉点的距离大的时候,那A与B不就不能到达最左边的最远距离,那该怎么解决呢?

我们可以计算两个人到这个数上面的某一个点的距离,如果说Bob到某一个顶点的距离比Alice到某一个点的距离要大的话,这个点不成立,Bob是不会走滴(Bob要尽量把这个时间最大化)!那我们不考虑这一部分不就行了吗,直接比较的是到某一个节点的时候Alice到这个节点的步数是大于Bob到这一点的步数,这样上面图中的问题就迎刃而解了。

那么我们确实是可以使用广搜来做的,并且根据题目中给出的例子,就算Bob到最远的角落里,这一点还是要加上的,那么我们只需求Alice到达最远处的距离就行了,然后乘以2.

 

#include <iostream>
#include<cstdio>
#include<queue>
#include<vector>
#include<cstring>
using namespace std;
const int maxn=2e5+5;
vector<int>mpp[maxn];//建立vector
int num1[maxn],num2[maxn];//分别代表Alice, Bob距离各自初始点的距离
int indexx[maxn];//判断是否走过某一点
int n,x;
void Bfs(int beginn,int *num)
{
    queue<int>q;
    memset(num,0,sizeof(num));
    memset(indexx,0,sizeof(indexx));//标记是否走过
    num[beginn]=0;//距离
    indexx[beginn]=1;
    q.push(beginn);
    while(!q.empty())
    {
        int t=q.front();
        q.pop();
        for(int i=0;i<mpp[t].size();++i)
        {
            int l=mpp[t][i];
            if(indexx[l]) continue;
            indexx[l]=1;
            num[l]=num[t]+1;
            q.push(l);
        }
    }
}
int main()
{
    while(~scanf("%d%d",&n,&x))//n-1组数据,Bob初始点
    {
        int a,b;
        for(int i=0;i<maxn;++i)
            mpp[i].clear();
        for(int i=1;i<n;++i)
        {
            cin>>a>>b;
            mpp[a].push_back(b);
            mpp[b].push_back(a);
        }
        Bfs(1,num1);
        Bfs(x,num2);
        int num_puts=0;
        for(int i=1;i<=n;++i)
        {
            if(num1[i]>num2[i])
                num_puts=max(num_puts,num1[i]);
        }
        printf("%d\n",num_puts*2);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值