卷积神经网络
1.1计算机视觉
识别一张图片时,不一定只要识别出相应的物体,比如无人驾驶技术。在目标检测项目中,首先需要计算出图中有哪些物体,再将它们模拟成一个个盒子,或者用其他的技术,识别出他们在图片中的位置。
另一个例子,是神经网络实现的图片风格迁移。你有一张图片(左),你想将他转换成右边的风格:
你有一张满意的图片和一张风格的图片,你可以用神经网络将他们融合在一起:
最后生成的图片是左边的轮廓和右边的风格。
应用风格迁移时,需要注意的一点是数据的输入可能会非常大。之前64*64的图片,其实是64*64*3=12288的维度,如果你要操作1000*1000的图片,维度是3M,你也许会有1000个隐藏单元 ,而所有的权值,组成了矩阵W^[1],这个矩阵的大小,将会是3M*1000,这意味着矩阵w^[1]会有30亿个参数!
1.2边缘检测示例
卷积运算是卷积神经网络的重要组成部分,使用边缘检测作为入门样例。
前面提到深层需要做的是检测物体的一个部分,或检测整个物体。那么怎么检测一个边缘呢?
以这个图片为例,我们首先检测的是他的垂直边缘,人的身体和直栏便被检测出来;然后检测水平边缘,横槛就被检测到了。如何检测的呢?
这是一个6*6的灰度图像,也就是6*6*1的矩阵A,为了检测边缘,我们可以创建一个3*3的过滤器filter,
在论文中,有时会叫他kernel(核),对他们做卷积运算,用A*filter表示,*是卷积运算的标准符号,得到的结果是4*4*1的矩阵,可以看成是一个4*4的图像。将过滤器覆盖在矩阵的第一个3*3方阵,如图