深度学习——学习笔记三

本文详细介绍了卷积神经网络(CNN)在计算机视觉中的应用,通过边缘检测实例阐述卷积运算的重要性,讨论了padding、卷积步长、卷积的有效性和池化层的作用,解释了为什么在深度学习中使用卷积网络。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

卷积神经网络

1.1计算机视觉           

        识别一张图片时,不一定只要识别出相应的物体,比如无人驾驶技术。在目标检测项目中,首先需要计算出图中有哪些物体,再将它们模拟成一个个盒子,或者用其他的技术,识别出他们在图片中的位置。

        另一个例子,是神经网络实现的图片风格迁移。你有一张图片(左),你想将他转换成右边的风格:

        

你有一张满意的图片和一张风格的图片,你可以用神经网络将他们融合在一起:

最后生成的图片是左边的轮廓和右边的风格。

应用风格迁移时,需要注意的一点是数据的输入可能会非常大。之前64*64的图片,其实是64*64*3=12288的维度,如果你要操作1000*1000的图片,维度是3M,你也许会有1000个隐藏单元 ,而所有的权值,组成了矩阵W^[1],这个矩阵的大小,将会是3M*1000,这意味着矩阵w^[1]会有30亿个参数!

1.2边缘检测示例

        卷积运算是卷积神经网络的重要组成部分,使用边缘检测作为入门样例。

        前面提到深层需要做的是检测物体的一个部分,或检测整个物体。那么怎么检测一个边缘呢?

        以这个图片为例,我们首先检测的是他的垂直边缘,人的身体和直栏便被检测出来;然后检测水平边缘,横槛就被检测到了。如何检测的呢? 

        这是一个6*6的灰度图像,也就是6*6*1的矩阵A,为了检测边缘,我们可以创建一个3*3的过滤器filter, 

 在论文中,有时会叫他kernel(核),对他们做卷积运算,用A*filter表示,*是卷积运算的标准符号,得到的结果是4*4*1的矩阵,可以看成是一个4*4的图像。将过滤器覆盖在矩阵的第一个3*3方阵,如图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值