算法实现
文章平均质量分 55
zbzckaiA
这个作者很懒,什么都没留下…
展开
-
regnet学习
RegnetRegNet | 何恺明团队最新作品,源于Facebook AI(附下载链接)_gzq0723的博客-CSDN博客点击蓝字关注我们扫码关注我们公众号: 计算机视觉战队扫码回复:regnet,获取下载链接♚声明这次分享的文章,比较偏理论一些,周末请阅读的同学静下心好好阅读,真的可以学习到很多,我们就...https://blog.csdn.net/gzq0723/article/details/105608530squeeze and excitation (SE)解读Squeeze.原创 2021-09-23 11:30:13 · 1084 阅读 · 0 评论 -
霍夫找线 ll
@https://www.pianshen.com/article/7696795559/霍夫找线原创 2021-08-02 18:03:33 · 140 阅读 · 0 评论 -
梯度下降理解
开始防止丢失复制了一份(https://blog.csdn.net/red_stone1/article/details/80212814)g理解:转嫁到求损失,f()则为损失函数,则目标就是让损失为0(目标是已知的),则根据这种梯度下降的方式(此处之前在学习的时候固定思维了,还有很多优化方式,如牛顿法)来求解问题的话(这是大前提),那么解决问题就是每次优化后的f1,想要更快的趋向于0,那么其减去的值应该是在此情况下最大的值,最大值只有当cos=-1才能使得到的差的部分够小,...原创 2021-06-16 16:28:48 · 108 阅读 · 0 评论 -
pytorch常见操作
Author:Jack Stark@知乎From:极市平台导读本文是PyTorch常用代码段合集,涵盖基本配置、张量处理、模型定义与操作、数据处理、模型训练与测试等5个方面,还给出了多个值得注意的Tips,内容非常全面。PyTorch最好的资料是官方文档。本文是PyTorch常用代码段,在参考资料[1](张皓:PyTorch Cookbook)的基础上做了一些修补,方便使用时查阅。1. 基本配置导入包和版本查询 import torc...原创 2020-09-06 10:25:22 · 1199 阅读 · 0 评论 -
gan
http://efrosgans.eecs.berkeley.edu/CVPR18_slides/pix2pix.pdfhttp://efrosgans.eecs.berkeley.edu/CVPR18_slides/CycleGAN.pdfhttps://arxiv.org/abs/1611.07004https://www.jianshu.com/p/8c7a7cb7198c原创 2019-12-27 16:46:40 · 209 阅读 · 0 评论 -
深度学习卷积与反卷积理解
1.前言 传统的CNN网络只能给出图像的LABLE,但是在很多情况下需要对识别的物体进行分割实现end to end,然后FCN出现了,给物体分割提供了一个非常重要的解决思路,其核心就是卷积与反卷积,所以这里就详细解释卷积与反卷积。 对于1维的卷积,公式(离散)与计算过程(连续)如下,要记住的是其中一个函数(原函数或者卷积函数)在卷积前要翻转180度图1 对...转载 2019-10-18 10:58:06 · 299 阅读 · 0 评论 -
focal loss
object detection按其流程来说,一般分为两大类。一类是two stage detector(如非常经典的Faster R-CNN),另一类则是one stage detector(如SSD、YOLO系列)。 虽然one stage detector检测速度可以完爆two stage,但是mAP却干不过two stage。 So,Why? the Reason is:Clas...原创 2019-10-17 17:19:29 · 265 阅读 · 0 评论 -
Could not create cudnn handle: CUDNN_STATUS_ALLOC_FAILED or cudnn faild to initialize
Problem:Could not create cudnn handle: CUDNN_STATUS_ALLOC_FAILEDSolve:config = tf.ConfigProto()config.gpu_options.allow_growth = Truesession = tf.Session(config=config)...原创 2019-07-19 11:32:57 · 452 阅读 · 0 评论 -
window 10 rtx1660 keras安装
具体的安装办法见下:https://tensorflow.google.cn/install/gpu软件要求必须在系统中安装以下 NVIDIA® 软件:NVIDIA® GPU 驱动程序- CUDA 10.0 需要 410.x 或更高版本。 CUDA® 工具包- TensorFlow 支持 CUDA 10.0(TensorFlow 1.13.0 及更高版本) CUDA ...原创 2019-07-12 08:43:47 · 404 阅读 · 0 评论 -
bn
【深度学习】深入理解Batch Normalization批标准化这几天面试经常被问到BN层的原理,虽然回答上来了,但还是感觉答得不是很好,今天仔细研究了一下Batch Normalization的原理,以下为参考网上几篇文章总结得出。 Batch Normalization作为最近一年来DL的重要成果,已经广泛被证明其有效性和重要性。虽然有些细节处理还解释不清其理论原因,但是实践证...原创 2019-06-25 16:17:55 · 273 阅读 · 0 评论 -
深度学习常用代码
模型的保存于加载:model.save('mnist-mpl.h5')from keras.models import load_modelmodel = load_model('mnist-mpl.h5')原创 2019-04-25 08:26:56 · 274 阅读 · 0 评论 -
Python 问题汇总(21个TensorFlow项目转换tfrecord)
1.UnicodeDecodeError: 'gbk' codec can't decode byte 0xff in position 0: invalid start byte在是使用Tensorflow读取图片文件的情况下,会出现这个报错代码如下修改如下2.3.查找了相关资料错误原因可见https://blog.csdn.net/qq_...原创 2019-04-02 09:51:40 · 373 阅读 · 1 评论 -
arg传参数
import sysimport osimport argparseimport numpy as npimport randomparser = argparse.ArgumentParser()parser.add_argument('input_dir', type=str, help='Directory with unaligned images.')parser.add_...原创 2019-02-27 09:03:13 · 1201 阅读 · 0 评论 -
python的格式处理
1、 字符串的使用方式:定义:利用双引号或者单引号直接进行定义。若字符串中含有单引号,则可以将双引号放到外面作为字符串的定义,同理,双引号放到里面,单引号放到外面也可以定义。例如:Print(‘“hello” word!’)基本的函数使用:len()表示查看数据的长度endswith()检查字符串是否已给定的字符串结尾startswith()检查字符串是否已给定的字符串原创 2017-09-18 17:13:36 · 462 阅读 · 0 评论 -
numpy 基础
Numpy是Python的一个能快速处理矩阵运算的数学库,如果你从事的是数据科学,或者机器学习领域的话,Numpy是一项最基本的技能。他不仅简化了我们在处理矩阵运算时需要编写的代码,而且,许多Numpy的底层函数用C编写,我们能获得在用普通Python自带的列表结构时,所无法达到的运算速度。下面,我将就Numpy的一些基本用法,做个简单的介绍,当然,一来Numpy库本身会不断更新,二来,我转载 2017-09-18 20:17:26 · 688 阅读 · 0 评论 -
R语言data.table包的使用
DF = data.frame(x=rep(c("b","a","c"),each=3),y=c(1,3,6),v=1:9)> DT=as.data.table(DF,keep.rownames = TRUE)> DT rn x y v1: 1 b 1 12: 2 b 3 23: 3 b 6 34: 4 a 1 45: 5 a 3 56: 6 a转载 2017-10-24 20:37:34 · 2923 阅读 · 0 评论 -
=logistic求导
format_list_numbered1. 相关函数求导公式2. Logistic 回归的 Cost function 的推导过程:2.1. Logistic回归的代价函数可以统一写成如下一个等式:2.1.1. 下面开始我们的推导过程:如果要求 对某一个参数 的偏导数,则:3. (1)4. (2)4.1. 将 (3) (4) 代入 (2) 中 ,可得:4.2. 推导结果:4.2.1. 结论:Lo...转载 2018-06-18 11:46:59 · 2038 阅读 · 0 评论 -
LightGBM
自从微软推出了LightGBM,其在工业界表现的越来越好,很多比赛的Top选手也掏出LightGBM上分。所以,本文介绍下LightGBM的特别之处。LightGBM算法在模型的训练速度和内存方面都有相应的优化。基于树模型的boosting算法,很多算法比如(xgboost 的默认设置)都是用预排序(pre-sorting)算法进行特征的选择和分裂。首先,对所有特征按数值进行预排序。...转载 2018-11-12 20:17:07 · 370 阅读 · 0 评论 -
神经网络语言模型(NNLM)/word2vec学习
在学习这块的时候卡在了对于训练目标的确定上,目标函数是什么?随时函数又改怎么确定?主要的难点在于像推荐算法、图片识别等模型均有明显的目标去训练,什么是高潜用户?那张图片上面有一只狗,但是语言模型的目标较为抽象。1.NNLM(神经网语言模型)https://blog.csdn.net/u010089444/article/details/52624964?ref=myreadhttp:/...原创 2018-12-12 16:44:52 · 650 阅读 · 0 评论 -
【TensorFlow】关于卷积和pooling层的输出维度问题和相应的参数设置
关于tensorflow shape 设置问题:整形:x_image = tf.reshape(xs,[-1,28,28,1])#-1 表示最后一行,即num_sample:样本数量#[28,28] 图片size#1 表示输出通道数卷积层:tf.nn.conv2d(x,W,strides,padding='SAME')strides步长:[1,x,y,1]strides : str...转载 2018-12-20 16:51:17 · 654 阅读 · 0 评论 -
TensorFlow实战 笔记——tf.nn.nce_loss
这两天因为实现mxnet的nce-loss,因此研究了一下tensorflow的nce-loss的实现。所以总结一下。先看看tensorflow的nce-loss的API:def nce_loss(weights, biases, inputs, labels, num_sampled, num_classes, num_true=1, ...转载 2018-12-29 09:38:38 · 266 阅读 · 0 评论 -
gbdt 为什么要用负梯度来代表残差?
https://www.optbbs.com/thread-279562-1-1.htmlhttps://blog.csdn.net/shenxiaoming77/article/details/728106711.负梯度的方向可证,模型优化下去一定会收敛2.对于一些损失函数来说最大的残差方向,并不是梯度下降最好的方向,倒是损失函数最小与残差最小两者目标不统一3.引用...原创 2019-01-10 15:41:36 · 3491 阅读 · 0 评论 -
sqlite使用
一、下载安装2、下载后解压将目录放到环境变量中,打开cmd,sqlite3打开3.基本操作 .open db.splite3打开一个database数据库select name from sqlite_master where type = 'table'; 查看有什么表.output d:/data/lagou.sql //导出路径及文件名 .dump //开始导出...原创 2019-02-21 14:01:51 · 254 阅读 · 0 评论 -
基于Python的机器学习实战:Apriori
转载请注明出处:http://www.cnblogs.com/90zeng/ 作者:博客园-90Zeng目录:1.关联分析2. Apriori 原理3. 使用 Apriori 算法来发现频繁集4.从频繁集中挖掘关联规则5. 总结 1.关联分析 返回目录关联分析是一种在大规模数据集中寻找有趣关系的任务。转载 2017-09-14 18:17:06 · 388 阅读 · 1 评论