Subset Sums

题意:给定整数N,求将正整数集{1,2,...,N}分成两个子集,并且这两个子集所有元素的和相等,这样的分法有多少种?


解题思路

  1. 读入N
  2. 这N个数的和必须是偶数,根据等差数列求和公式可得出N=4k或者N=4k-1,其中k为自然数
  3. 起初使用枚举法,但是都会超时,于是参考了NOCOW上的思路(http://www.nocow.cn/index.php/USACO/subset),原来不需要将分割的方法列举出来,而只需要计算分割的方法数量即可
  4. 设分成的子集为set1,set2,sum=(n*(n+1)div 2)div 2. 设f[i,j]表示取前i个数,使set1总数和为j的方案数.第i个数的值为i,根据是否取第i个数就有
    f[i,j]=f[i-1,j]+f[i-1,j-i]    j-i>=0 
    f[i,j]=f[i-1,j]               j-i<0 
  5. 下面只需要设定初始值,然后用一个双重循环即可得到最后的答案,思想同样来自NOCOW
    f[1,1]:=1;
      f[1,0]:=1;
      for i:=2 to n do
       for j:=0 to sum do
        if j-i>=0 then f[i,j]:=f[i-1,j]+f[i-1,j-i]
        else f[i,j]:=f[i-1,j];

代码

/*
ID: zc.rene1
LANG: C
PROG: subset
 */


#include<stdio.h>
#include<stdlib.h>
#include<string.h>




int main(void)
{
    FILE *fin, *fout;
    unsigned int **arr = NULL;
    int N, sum, i, j;


    fin = fopen("subset.in", "r");
    fout = fopen("subset.out", "w");


    fscanf(fin, "%d", &N);
    sum = N*(N+1)/2;


    arr = (unsigned int**)malloc((N+1)*sizeof(unsigned int*));
    for (i=0; i<=N; i++)
    {
	arr[i] = (unsigned int*)malloc((sum/2+1)*sizeof(unsigned int));
	memset(arr[i], 0, (sum/2+1)*sizeof(unsigned int));
    }


    arr[1][1] = 1;
    arr[1][0] = 1;


    if ((N%4==0)||(N%4==3))
    {
	for (i=2; i<=N; i++)
	{
	    for (j=0; j<=(sum/2); j++)
	    {
		if (i <= j)
		{
		    arr[i][j] = (arr[i-1][j-i]+ arr[i-1][j]);
		}
		else
		{
		    arr[i][j] = arr[i-1][j];
		}
	    }
	}
	fprintf(fout, "%d\n", arr[N][sum/2]/2);
    }
    else
    {
	fprintf(fout, "0\n");
    }
    return 0;
}




















  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值