题意:摘自NOCOW翻译(http://www.nocow.cn/index.php/Translate:USACO/bigbrn)
描述
农夫约翰想要在他的正方形农场上建造一座正方形大牛棚。他讨厌在他的农场中砍树,想找一个能够让他在空旷无树的地方修建牛棚的地方。我们假定,他的农场划分成 N x N 的方格。输入数据中包括有树的方格的列表。你的任务是计算并输出,在他的农场中,不需要砍树却能够修建的最大正方形牛棚。牛棚的边必须和水平轴或者垂直轴平行。
[编辑]格式
EXAMPLE
考虑下面的方格,它表示农夫约翰的农场,‘.'表示没有树的方格,‘#'表示有树的方格
1 2 3 4 5 6 7 8 1 . . . . . . . . 2 . # . . . # . . 3 . . . . . . . . 4 . . . . . . . . 5 . . . . . . . . 6 . . # . . . . . 7 . . . . . . . . 8 . . . . . . . .
最大的牛棚是 5 x 5 的,可以建造在方格右下角的两个位置其中一个。
PROGRAM NAME: bigbrn
INPUT FORMAT
Line 1: 两个整数: N (1 <= N <= 1000),农场的大小,和 T (1 <= T <= 10,000)有树的方格的数量
Lines 2..T+1: 两个整数(1 <= 整数 <= N), 有树格子的横纵坐标
OUTPUT FORMAT
输出文件只由一行组成,约翰的牛棚的最大边长。
[编辑]SAMPLE INPUT (file bigbrn.in)
8 3 2 2 2 6 6 3
[编辑]SAMPLE OUTPUT (file bigbrn.out)
5
解题思路:
- 用matrix[i][j] = k保存土地的信息,matrix[i][j] = 0代表(i, j)没有树,matrix[i][j] = 1代表(i, j)中有树
- 用f[i][j] = k代表左上角坐标为(i, j)的最大barn的边长为k
- 边界条件:如果matrix[i][N] = 1,则相应f[i][N] = 0,否则f[i][N] = 1;如果matrix[N][i] = 1,则相应f[N][i] = 0,否则f[N][i] = 1。其中i的取值范围为[1, N]
- 滚雪球公式:如果matrix[i][j] = 1,f[i][j] = 0;如果matrix[i][j] = 0,f[i][j] = min(f[i + 1][j], f[i][j + 1], f[i + 1][j + 1]) + 1。i和j均由N-1向1搜索
代码:
/*
ID: zc.rene1
LANG: C
PROG: bigbrn
*/
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#define MAX_N 1000
int N, T;
int matrix[MAX_N + 2][MAX_N + 2];
int f[MAX_N + 2][MAX_N + 2];
int global_max;
void GetInput(FILE *fin)
{
int i, x, y;
memset(matrix, 0, (MAX_N + 2) * (MAX_N + 2) * sizeof(int));
fscanf(fin, "%d %d", &N, &T);
for (i=1; i<=T; i++)
{
fscanf(fin, "%d %d", &x, &y);
matrix[x][y] = 1;
}
}
void Initialize(void)
{
int i;
memset(f, -1, (MAX_N + 2) * (MAX_N + 2) * sizeof(int));
for (i=1; i<=N; i++)
{
if (matrix[i][N] == 0)
{
f[i][N] = 1;
}
else
{
f[i][N] = 0;
}
if (matrix[N][i] == 0)
{
f[N][i] = 1;
}
else
{
f[N][i] = 0;
}
}
}
int min(int a, int b, int c)
{
int ret = a;
if (b < ret)
{
ret = b;
}
if (c < ret)
{
ret = c;
}
return ret;
}
void BeginDP(void)
{
int i, j;
global_max = 0;
for (i=N-1; i>=1; i--)
{
for (j=N-1; j>=1; j--)
{
if (matrix[i][j] == 1)
{
f[i][j] = 0;
continue;
}
f[i][j] = min(f[i+1][j], f[i][j+1], f[i+1][j+1]) + 1;
if (f[i][j] > global_max)
{
global_max = f[i][j];
}
}
}
}
int main(void)
{
FILE *fin, *fout;
fin = fopen("bigbrn.in", "r");
fout = fopen("bigbrn.out", "w");
GetInput(fin);
Initialize();
BeginDP();
fprintf(fout, "%d\n", global_max);
return 0;
}