- 博客(10)
- 收藏
- 关注
原创 图像——数据预处理(旋转,平移,加噪)
在涉及图像的项目中经常需要对图像进行预处理,而常见的预处理操作包括旋转、平移、翻转、加噪等。使用openCV对图像进行预处理时,需要利用矩阵来进行计算,预处理各种操作具体细节如下: 1. 旋转 假设需要将图像顺时针旋转30°(逆时针可用负值表示),则旋转弧度为,即将角度转换成弧度。则需要计算正弦与余弦的值:与。这样可以构建旋转矩阵。 利用openCV中仿射变换的函...
2019-08-29 19:55:44 1713 1
原创 python 工具神器: pandas
最近实习需要处理大量数据,数据预处理过程伴随着大量逻辑功能实现,自己写的代码往往时间代价很大,时间不等人啊,必须得快速解决数据预处理,不然老大怼着问进度,自己也着急。于是网上各种查实现某种数据预处理功能快速的方法,找来找去,最后不得不感叹。pandas真的是个神器。 pandas基础内容很多,就不详细说了。在此仅仅介绍一下工程上实用的小技巧: a)文件读写 b)数据处理 一、 ...
2018-08-15 15:31:26 357
原创 python中常用的文件读写方法(txt文本文件,excel文件,CVS文件,mat文件)
一、txt类文本文件的读写 使用python处理数据文件较多,而且大部分数据文件保存在文本文件中(例如:‘ .txt ’, ' .json ' 文件) 读取文本文件的主要步骤分为:a)打开目标文件; b)获取文件内数据; c)关闭文件 打开文件的一般方式为: f=open(file_name,access_mode =...
2018-08-14 15:01:54 1379
原创 朴素贝叶斯(naive Bayes)原理
朴素贝叶斯方法是基于贝叶斯定理与特征条件独立假设的分类方法。 贝叶斯定理:条件概率推理,利用条件概率来对一些事情进行推断。 特征条件独立假设:用于分类的特征在类确定的情况下都是条件独立的。 1. 贝叶斯分类基本原理: 对于给定集合{X,Y},首先求取类别Y的分布概率,这是先验概率分布。 再求取条件概率分布:,该分布的意义是训练数据集中标签为的样本集中,第j个样...
2018-04-25 21:45:54 608
原创 感知机原始形式、对偶形式
感知机的原始形式对于输入样本特征数据,感知机通过以下函数将其映射至{+1,-1}的输出空间 f(x)=sign(w⋅x+b)f(x)=sign(w⋅x+b)(1) 对于所有的错分类点i∈Mi∈M,都有−yi(w⋅xi+b)>0−yi(w⋅xi+b)>0,因此我们可以定义如下的损失函数作为优化准则: L(w,b)=−∑xi∈Myi(w⋅xi+b)L(w,b)=−∑xi∈Myi(w⋅xi+...
2018-04-19 11:09:53 1156 1
原创 机器学习之感知机与梯度下降法认知
感知机原理: 感知机是一种线性二分类模型,其目的是找到能将训练数据线性可分的分离超平面。对于数据集T 来说,存在可将数据集线线性划分的超平面S: ...
2018-04-18 09:14:12 3242
原创 机器学习中的生成模型与判别模型
机器学习中,监督学习模型主要有两种方式: 生成学习与判别学习。生成模型原理:根据学习联合概率分布P(X,Y),求出条件概率分布 P(Y|X)做为预测模型。 每一类单独学习模型,再用新的样本预测,在哪一类上预测概率最大,输出结果即为哪一类。经典模型:朴素贝叶斯(Naive Bayes,NB) 隐马尔可夫链(Hidden Markov Model,HM...
2018-04-17 20:56:18 418
原创 机器学习中的损失函数与正则化
正则化是结构风险最小化的实现策略,形式是在经验风险最小化的后面加上正则项。(正则项一般是模型复杂度的单调递增函数,模型越复杂,正则项的值越大)。 损失函数一般有一下几种:1. 0-1损失函数(感知机) ...
2018-04-17 16:03:13 1640
原创 基于python keras 卷积神经网络的报文识别代码
项目要求:利用卷积神经网络来对电报报文进行识别,因为报文数据集较小,需要用到MNIST数据集来作为训练集。实现步骤:1. 数据预处理:将报文图片处理成单个数字2. 网络训练3. 网络参数微调4. 分类预测一. 数据集 如下所示,每个报文由四个数字组成 ...
2018-04-16 18:33:55 1063 1
原创 经验风险最小化与结构风险最小化
最近在看李航的统计学习方法,边看边做点笔记。本文,包括后续写作纯属个人浅见。 模型学习目标是选择期望风险最小的模型,但期望风险最小模型需要用到联合分布概率 P(X,Y)求取条件概率分布 P(Y|X),从而获取预测结果,计算损失。然而,联合概率分布未知,导致监督学习成为一个病态问题。 在训练集, 假设空间以及损失函数已知的情况下,期望风险为训练样本损失均值。根据大数定理,当样本容量足够大...
2018-04-13 16:45:07 699
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人