教你申请永久免费的 us.kg 域名 支持接入 Cloudflare

本文首发于只抄博客,欢迎点击原文链接了解更多内容。

前言

之前的永久免费域名 eu.org 已经很久没有审批新的域名了,今天给大家推荐的 us.kg 不需要审批,注册账号申请域名后直接可以使用,并且它也可以像 eu.org 一样接入 Cloudflare

在申请之前需要注意以下几点:

  • 每个账号可以注册 3 个域名
  • 永久免费,但每年需要提前 180 天手动续期 1 次
  • 注册时需要 KYC,但目前没有验证,可以随意填写
  • 免费域名不能保证长期稳定,请勿用于生产环境

申请步骤

  1. 打开申请页面(https://register.us.kg/),点击下方的 Sign up

us.kg1

  1. 填写相关信息,注意邮箱不可以使用临时邮箱,其余信息可以使用这个工具生成

us.kg2

  1. 登录后可能需要 KYC ,内容可以任意填写,图片也可以随意上传一张,系统会自动通过审核
  2. 完成 KYC 进入后台后,可以直接点击左侧的 Domain Registration 申请域名

us.kg3

  1. 填写 NS,将 Cloudflare 的 NS 填入即可

us.kg4

  1. 完成以上步骤后,就能看到域名申请成功了

us.kg5

  1. 等待片刻之后,会收到 Cloudflare 邮件,提示域名成功接入,此时就可以直接在 Cloudflare 解析使用域名了

us.kg6

### 2025年AI大模型的应用场景 随着技术的进步,预计到2025年,AI大模型将在多个领域展现出更广泛的应用价值。这些模型不仅能处理复杂的任务,还能在特定行业中发挥重要作用。 #### 自然语言处理(NLP) NLP将继续作为AI大模型的重要应用方向之一。届时,基于Transformer架构的大规模预训练模型将进一步优化对话系统的性能,在客服机器人、智能翻译等方面取得显著成果[^1]。例如,企业级客户服务平台将集成先进的多轮对话管理能力,使得机器人的应答更加流畅自然;跨国公司内部沟通工具也将受益于高质量的语言转换服务。 ```python import transformers as trfms tokenizer = trfms.AutoTokenizer.from_pretrained('bert-base-multilingual-cased') model = trfms.BertForSequenceClassification.from_pretrained('bert-base-multilingual-cased') def translate_text(text, target_language='en'): inputs = tokenizer.encode_plus( text, add_special_tokens=True, max_length=512, padding="max_length", truncation=True, return_attention_mask=True, return_tensors='pt' ) outputs = model.generate(**inputs) translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return translated_text ``` #### 计算机视觉(CV) CV方面,图像分类、目标检测以及语义分割等功能会变得更加精准高效。特别是对于医疗影像诊断而言,借助高性能GPU集群加速推理过程,医生可以获得更为可靠的辅助判断依据。此外,零售业利用无人商店内的摄像头监控系统自动识别人脸并完成支付操作也逐渐普及开来。 ```python from ultralytics import YOLO yolo_model = YOLO('yolov8n.pt') results = yolo_model.predict(source='path_to_image_or_video', save=True) for r in results: boxes = r.boxes.xyxy.cpu().numpy() confidences = r.boxes.conf.cpu().numpy() class_ids = r.boxes.cls.cpu().numpy() print(f'Detected objects with confidence scores:\n{list(zip(class_ids, confidences))}') ``` #### 生物医药研究 生物医药行业同样期待着来自AI的力量。药物发现过程中涉及大量化合物筛选工作量巨大且耗时长久,而采用深度学习算法可以帮助科学家们快速定位潜在有效成分。基因编辑CRISPR-Cas9技术配合上预测蛋白质结构的AlphaFold2等工具,则有望开启个性化治疗新时代。 ```bash conda create --name bioai python=3.9 conda activate bioai pip install biopython torch geometric deepchem alphafold ``` ### 实际部署案例 在中国市场环境下,不同地区政府积极出台政策措施促进本地化创新与发展: - **北京**:聚焦基础理论探索和技术标准制定; - **上海**:致力于构建具有全球影响力的产业生态体系; - **深圳**:鼓励开放共享平台建设,降低中小企业进入门槛; - **安徽**:通过税收优惠等方式吸引更多优质项目落地生根; - **成都**:针对金融、育等行业特点定制专属解决方案; - **杭州**:扶持阿里巴巴达摩院为代表的一批领军型企业开展核心技术突破。 上述举措共同促进了全国范围内AI大模型项目的蓬勃发展,并形成了良好的示范效应[^2]。 ### 最新进展 近年来,研究人员不断尝试改进现有框架以适应更多样化的应用场景需求。一方面,轻量化版本相继问世,旨在解决移动端设备资源受限的问题;另一方面,“零样本/少样本”学习机制受到广泛关注——即无需大规模标注数据集即可实现良好泛化效果的新范式正在形成之中。与此同时,跨模态融合也成为热点话题,比如结合文本描述自动生成逼真图片的技术已经取得了阶段性成就[^3]。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值