软件工程之应用数学

第 20 章:应用数学

数学是一种严谨、缜密的科学,学习应用数学知识,可以培养系统架构设计师的抽象思维能力和逻辑推理能力,在从事系统分析工作时思路清晰,在复杂、紊乱的现象中把握住事物的本质,根据已知和未知事物之间的联系推断事物发展趋势和可能的结果。

应用数学虽然涉及的内容很多,但经常考查的知识点却往往集中于运筹方法与数据建模,所以本章将着重介绍这两个方面的内容。

20.1 运筹方法

运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决。前者提供模型,后者提供理论和方法。

运筹学可以根据问题的要求,通过数学上的分析、运算,得出各种各样的结果,最后提出综合性的合理安排,以达到最好的效果。

运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制订方案、建立模型、制订解法。

20.1.1 网络计划技术

用网络分析的方法编制的计划称为网络计划,它是一种编制大型工程项目进度计划的有效方法。计划借助于网络表示各项工作与所需要的时间,以及各项工作的相互关系。通过网络分析研究工程费用与工期的关系,并找出在编制计划及计划执行过程中的关键路径,这种方法称为关键路径法(Critical Path Method,CPM)。

1.关键路径
在现代管理中,人们常用有向图来描述和分析一项工程的计划和实施过程,一项工程常被分为多个小的子工程,这些子工程称为活动。在有向图中,若以顶点表示活动,弧表示活动之间的先后关系,这样的图简称为 AOV(Activity On Vertex)网;若以顶点表示事件,弧表示活动,权表示完成该活动所需的时间(称为活动历时或持续时间),这样的图称为 AOE(Activity On Edge)网。例如,图 20-1 表示一个具有 10 个活动的某个工程的 AOE 网。图中有 7 个顶点,分别表示事件 1~7,其中 1 表示工程开始状态,7 表示工程结束状态。
在这里插入图片描述
因 AOE 网中的某些活动可以并行地进行,所以完成工程的最少时间是从开始顶点到结束顶点的最长路径长度,称从开始顶点到结束顶点的最长路径为关键路径(临界路径),关键路径上的活动为关键活动。

为了找出给定的 AOE 网络的关键活动,从而找出关键路径,先定义几个重要的量:
(1)Ve(j)、Vl(j):顶点 j 事件最早、最迟发生时间。
(2)e(i)、l(i) :活动 i 最早、最迟开始时间。
从源点 V1 到某顶点 Vj 的最长路径长度,称为事件 Vj 的最早发生时间,记作 Ve(j)。Ve(j) 也是以 Vj 为起点的出边<Vj,Vk>所表示的活动 ai 的最早开始时间 e(i)。在不推迟整个工程完成的前提下,一个事件 Vj 允许的最迟发生时间,记作 Vl(j)。显然,l(i)=Vl(j)−(ai 所需时间),其中 j 为 ai 活动的终点。满足条件 l(i)=e(i)的活动为关键活动,关键活动所组成的路径称为关键路径。

求顶点 Vj 的 Ve(j)和 Vl(j)可按以下两步来做:
1)由源点开始向汇点递推
在这里插入图片描述
其中,E1 是网络中以 Vj 为终点的入边集合。
(2)由终点(汇点)开始向源点递推
在这里插入图片描述
其中,E2 是网络中以 Vj 为起点的出边集合。
要求一个 AOE 网的关键路径,一般需要根据以上变量列出一张表格,逐个检查。例如,
求图 20-1 所示的 AOE 网的关键路径的表格如表 20-1 所示
在这里插入图片描述
因此,图 20-1 的关键活动为 a1,a2,a4,a8 和 a9,其对应的关键路径有两条,分别
为 V1→V2→V5→V7 和 V1→V4→V5→V7,长度都是 10。

2.网络优化
在得到了关键路径后,就相当于得到了项目的计算工期,得到了一个初始的计划方案。但通常还要对初始方案进行调整和完善。根据计划的要求,综合考虑进度、资源、费用等目标,即进行网络优化,确定最优的计划方案。

(1)时间优化。根据对计划进度的要求,缩短工程完成时间。既可以采取技术措施,缩短工程完工时间,也可以采取组织措施,充分利用非关键活动的总时差(最迟开始时间-最早开始时间),合理调配技术力量及人、财、物等资源,缩短关键活动的持续时间。还可以通过改变工作之间的逻辑关系,采用并行的方式来缩短工期。

(2)时间-资源优化。在编制网络计划、安排工程进度的同时,就要考虑尽量合理地利用现有资源,并缩短工程周期。但是,由于一项工程所包含的活动繁多,涉及的资源利用情况比较复杂,往往不可能在编制网络计划时,一次性把进度和资源利用都能够作出统筹合理的安排,而是需要进行几次综合平衡之后,才能得到在时间进度及资源利用等方面都比较合理的计划方案。具体的要求和做法是:优先安排关键活动所需要的资源;利用非关键活动的总时差,错开各活动的开始时间,拉平资源需要量的高峰;在确实受到资源限制,或者在考虑综合经济效益的条件下,也可以适当地推迟工程完工时间。

(3)时间-费用优化。在编制网络计划过程中,研究如何使得工程完工时间短、费用少;或

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

恒二哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值