Hdu 1024 Max Sum Plus Plus 动态规划+滚动数组

题意:n个点,求出m对不相交连续子序列的最大和。

最大连续子序列的扩展,状态转移方程为 d[i][j]=max(d[i][j-1]+a[j],max(d[i-1][k])+a[j]),(i-1<=k<j)。i为有i对子序列,j为第j个数。由于第i层只和第i-1层有关,所以可以用滚动数组,只保存上一层的数据,用mmax[j]代替max(d[i-1][k]),为前j个数的最大和。

#include <iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#define N 1001000
#define INF 0x7fffffff
using namespace std;

int a[N],mmax[N],d[N];

int main()
{
    int n,m,tp;
    while(~scanf("%d%d",&m,&n))
    {
        for(int i=1;i<=n;i++)   scanf("%d",&a[i]);
        memset(d,0,sizeof(d));
        memset(mmax,0,sizeof(mmax));//mmax[j]=max(d[i-1][k]);(0<k<j)
        for(int i=1;i<=m;i++)
        {
            tp=-INF;
            for(int j=i;j<=n;j++)
            {
                d[j]=max(d[j-1]+a[j],mmax[j-1]+a[j]);//d[i][j]=max(d[i][j-1]+a[j],max(d[i-1][k])+a[j]);(0<k<j)
                mmax[j-1]=tp;//更新mmax[j-1]
                tp=max(tp,d[j]);//取出前j项的最大值,为下一次更新mmax[j]做准备
            }
        }
        cout<<tp<<endl;
    }
}




评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值