题意:n个点,求出m对不相交连续子序列的最大和。
最大连续子序列的扩展,状态转移方程为 d[i][j]=max(d[i][j-1]+a[j],max(d[i-1][k])+a[j]),(i-1<=k<j)。i为有i对子序列,j为第j个数。由于第i层只和第i-1层有关,所以可以用滚动数组,只保存上一层的数据,用mmax[j]代替max(d[i-1][k]),为前j个数的最大和。
#include <iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#define N 1001000
#define INF 0x7fffffff
using namespace std;
int a[N],mmax[N],d[N];
int main()
{
int n,m,tp;
while(~scanf("%d%d",&m,&n))
{
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
memset(d,0,sizeof(d));
memset(mmax,0,sizeof(mmax));//mmax[j]=max(d[i-1][k]);(0<k<j)
for(int i=1;i<=m;i++)
{
tp=-INF;
for(int j=i;j<=n;j++)
{
d[j]=max(d[j-1]+a[j],mmax[j-1]+a[j]);//d[i][j]=max(d[i][j-1]+a[j],max(d[i-1][k])+a[j]);(0<k<j)
mmax[j-1]=tp;//更新mmax[j-1]
tp=max(tp,d[j]);//取出前j项的最大值,为下一次更新mmax[j]做准备
}
}
cout<<tp<<endl;
}
}