题意:给出n个点,至少包含三个节点的最小环。
最小环的算法如下:
Floyd 的 改进写法可以解决最小环问题,时间复杂度依然是 O(n^3),储存结构也是邻接矩阵
int mincircle = infinity;
Dist = Graph;
for(int k=0;k<nVertex;++k){
}
上面是对无向图的情况。
Floyd 算法保证了最外层循环到 k 时所有顶点间已求得以 0…k-1 为中间点的最短路径。一个环至少有3个顶点,设某环编号最大的顶点为 L ,在环中直接与之相连的两个顶点编号分别为 M 和 N (M,N< L),则最大编号为 L 的最小环长度即为 Graph(M,L) + Graph(N,L) + Dist(M,N) ,其中 Dist(M,N) 表示以 0…L-1 号顶点为中间点时的最短路径,刚好符合 Floyd 算法最外层循环到 k=L 时的情况,则此时对 M 和 N 循环所有编号小于 L 的顶点组合即可找到最大编号为 L 的最小环。再经过最外层 k 的循环,即可找到整个图的最小环。
若是有向图,只需稍作改动。注意考虑有向图中2顶点即可组成环的情况。
#include <iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
#define N 110
#define INF 0x7ffffff
using namespace std;
int mp[N][N],d[N][N],n,m;
void floyd()
{
int ans=INF;
for(int k=1;k<=n;k++)
{
for(int i=1;i<k;i++)
for(int j=i+1;j<k;j++)
ans=min(ans,mp[i][k]+mp[k][j]+d[i][j]);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
}
if(ans==INF) cout<<"It's impossible."<<endl;
else cout<<ans<<endl;
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
for(int i=0;i<=n;i++)
for(int j=0;j<=n;j++)
mp[i][j]=d[i][j]=INF;
for(int i=0;i<m;i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
if(mp[u][v]>w) d[u][v]=d[v][u]=mp[u][v]=mp[v][u]=w;
}
floyd();
}
}