51nod 1031 骨牌覆盖

43 篇文章 0 订阅
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1031
题目:
在2*N的一个长方形方格中,用一个1*2的骨牌排满方格。
问有多少种不同的排列方法。

例如:2 * 3的方格,共有3种不同的排法。(由于方案的数量巨大,只输出 Mod 10^9 + 7 的结果)
Input
输入N(N <= 1000)
Output
输出数量 Mod 10^9 + 7

斐波那契数列。
#include <iostream>
#include<bits/stdc++.h>
#define MOD 1000000007
using namespace std;

int d[1100];
int main()
{
    int n;
    scanf("%d",&n);
    d[0]=d[1]=1;
    for(int i=2;i<=n;i++)
        d[i]=(d[i-1]+d[i-2])%MOD;
    cout<<d[n]<<endl;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值