题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1013
题目:
求:3^0 + 3^1 +...+ 3^(N) mod 1000000007
Input
输入一个数N(0 <= N <= 10^9)
Output
输出:计算结果
Input示例
3
Output示例
40
等比数列只需要求(3^(n+1)-1)/2即可。
涉及到取模的除法,需要用费马小定理。
#include <iostream>
#include<bits/stdc++.h>
#define MOD 1000000007
#define ll long long
using namespace std;
ll _pow(ll n,ll t)
{
ll ans=1;
while(n)
{
if(n&1) ans=(ans*t)%MOD;
n/=2;
t=(t*t)%MOD;
}
return ans;
}
int main()
{
ll n;
scanf("%lld",&n);
ll a=(_pow(n+1,3)-1+MOD)%MOD;
ll b=_pow(MOD-2,2);
cout<<(a*b)%MOD<<endl;
}