51nod 1021 石子归并 dp

题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1021

题目:

N堆石子摆成一条线。现要将石子有次序地合并成一堆。规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的代价。计算将N堆石子合并成一堆的最小代价。

例如: 1 2 3 4,有不少合并方法
1 2 3 4 => 3 3 4(3) => 6 4(9) => 10(19)
1 2 3 4 => 1 5 4(5) => 1 9(14) => 10(24)
1 2 3 4 => 1 2 7(7) => 3 7(10) => 10(20)

括号里面为总代价可以看出,第一种方法的代价最低,现在给出n堆石子的数量,计算最小合并代价。
Input
第1行:N(2 <= N <= 100)
第2 - N + 1:N堆石子的数量(1 <= A[i] <= 10000)
Output
输出最小合并代价
Input示例
4
1
2
3
4
Output示例
19


经典dp,考虑从1堆到n堆的遍历,用d[I][j]记录合并第I堆到第j堆所用的最小代价。时间复杂度为O(n^3)。

#include <iostream>
#include<bits/stdc++.h>
#define N 110
#define INF 0x7ffffff
using namespace std;

int d[N][N],a[N];

int main()
{
    int n;
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
    {
        int t;
        scanf("%d",&t);
        a[i]=a[i-1]+t;
    }
    for(int i=1;i<=n;i++)
        for(int j=1;j+i<=n;j++)
        {
            d[j][j+i]=INF;
            for(int k=j;k<j+i;k++)
                d[j][j+i]=min(d[j][k]+d[k+1][j+i]+a[j+i]-a[j-1],d[j][j+i]);
        }
    cout<<d[1][n]<<endl;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值