题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1021
题目:
N堆石子摆成一条线。现要将石子有次序地合并成一堆。规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的代价。计算将N堆石子合并成一堆的最小代价。
例如: 1 2 3 4,有不少合并方法
1 2 3 4 => 3 3 4(3) => 6 4(9) => 10(19)
1 2 3 4 => 1 5 4(5) => 1 9(14) => 10(24)
1 2 3 4 => 1 2 7(7) => 3 7(10) => 10(20)
括号里面为总代价可以看出,第一种方法的代价最低,现在给出n堆石子的数量,计算最小合并代价。
Input
第1行:N(2 <= N <= 100) 第2 - N + 1:N堆石子的数量(1 <= A[i] <= 10000)
Output
输出最小合并代价
Input示例
4 1 2 3 4
Output示例
19
经典dp,考虑从1堆到n堆的遍历,用d[I][j]记录合并第I堆到第j堆所用的最小代价。时间复杂度为O(n^3)。
#include <iostream>
#include<bits/stdc++.h>
#define N 110
#define INF 0x7ffffff
using namespace std;
int d[N][N],a[N];
int main()
{
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
int t;
scanf("%d",&t);
a[i]=a[i-1]+t;
}
for(int i=1;i<=n;i++)
for(int j=1;j+i<=n;j++)
{
d[j][j+i]=INF;
for(int k=j;k<j+i;k++)
d[j][j+i]=min(d[j][k]+d[k+1][j+i]+a[j+i]-a[j-1],d[j][j+i]);
}
cout<<d[1][n]<<endl;
}