骨牌铺方格
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 40514 Accepted Submission(s): 19617
Problem Description
在2×n的一个长方形方格中,用一个1× 2的骨牌铺满方格,输入n ,输出铺放方案的总数.
例如n=3时,为2× 3方格,骨牌的铺放方案有三种,如下图:
例如n=3时,为2× 3方格,骨牌的铺放方案有三种,如下图:
Input
输入数据由多行组成,每行包含一个整数n,表示该测试实例的长方形方格的规格是2×n (0<n<=50)。
Output
对于每个测试实例,请输出铺放方案的总数,每个实例的输出占一行。
Sample Input
1 3 2
Sample Output
1 3 2
遇到的问题和思路:
就是斐波那契数列。如果把最后竖排,那么n-1排放好了。如果最后横排,那么n-2排放好了。
#include<cstdio> #include<cstring> #include<algorithm> #include<cmath> using namespace std; int n; long long a[60]; int main(){ a[0] = 1; a[1] = 1; for(int i = 2;i < 55;i++){ a[i] = a[i-1]+ a[i-2]; } while(scanf("%d",&n)!=EOF){ printf("%I64d\n",a[n]); } return 0; }