阿牛的EOF牛肉串
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 28045 Accepted Submission(s): 13142
你,NEW ACMer,EOF的崇拜者,能帮阿牛算一下一共有多少种满足要求的不同的字符串吗?
PS: 阿牛还有一个小秘密,就是准备把这个刻有 EOF的牛肉干,作为神秘礼物献给杭电五十周年校庆,可以想象,当校长接过这块牛肉干的时候该有多高兴!这里,请允许我代表杭电的ACMer向阿牛表示感谢!
再次感谢!
1 2
3 8
遇到的问题和解题思路:
首先看到这道题,因为是做的是递推系列的题目,自然而然就往递推方面思考了。然而这个和之前hdu2045的有所不同的是,在这个文本中,不是最后一个和第一个不相等,也不是两个不能连续的相等,而是其中一个不能连续的相等。所以感觉就遇到了一点点小麻烦。然后点进去discuss瞄了一眼,然后瞬间好像明白了些什么就出来了(其实也就是看到了要分类讨论)。果不其然,分类讨论一下就马上出来了。
首先,如果最后f(n)是E和F,那么前面f(n-1)不论是什么都可以变成这两个,所以这两个的可能性分别是f(n-1),所以为2*f(n-1)。接下来如果最后一个f(n)为O的话,那么f(n-1)就应该是E或F,同之前的推论可证,那么E和F出现的可能性又是f(n-2),所以为2*f(n-2)。
因此:f(n)=2*f(n-1)+2*f(n-2);
给出代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int n;
long long a[55];
int main(){
a[0] = 1,a[1] = 3;
for(int i = 2;i < 50;i++){
a[i] = 2 * a[i-1] + 2 * a[i-2];
}
while(scanf("%d",&n)!=EOF){
printf("%I64d\n",a[n]);
}
return 0;
}