连通区标记是最基本的图像处理算法之一,最近的项目中需要一个纯C语言实现的连通区标记算法,本以为如此基础的算法在网上能搜到现成代码,结果大失所望,讲解标记算法思想的文章很多,给出代码实例的却很少,能找到的几段程序,都有各种各样的问题。于是,自己动手丰衣足食,并拿出来与大家分享。
两阶段法是传统的连通区标记算法,在维基百科上有详细的介绍:
Connected Component Labeling
该算法中,第一阶段按从左至右、从上至下的顺序,对整幅图像进行扫描,通过比较每个前景像素的邻域进行连通区标记,并创建等效标记列表。第二阶段的任务是合并等效标记列表,并再次扫描图像以更新标记。算法的优点的是通俗易懂,缺点是需要两次扫描图像,效率不高,并且第二阶段编程实现较为复杂。
区域生长法利用区域生长的思想,一次生长过程可以标记一整个连通区,只需对图像进行一次扫描就能标记出所有连通区。算法描述如下:
Step1、输入待标记图像bitmap,初始化一个与输入图像同样尺寸的标记矩阵labelmap,一个队列queue以及标记计数labelIndex;
Step2、按从左至右、从上至下的顺序扫描bitmap,当扫描到一个未被标记的前景像素p时,labelIndex加1,并在labelmap中标记p(相应点的值赋为labelIndex),同时,扫描p的八邻域点,若存在未被标记的前景像素,则在labelmap中进行标记,并放入queue中,作为区域生长的种子;
Step3、当queue不为空时,从queue中取出一个生长种子点p1,扫描p1的八邻域点,若存在未被标记过的前景像素,则在labelmap中进行标记,并放入queue中;
Step4、重复Step3直至queue为空,一个连通区标记完成;
Step5、转到Step2,直至整幅图像被扫描完毕,得到标记矩阵labelmap和连通区的个数labelIndex。
该算法最坏情况下,将对每个像素点都进行一次八邻域搜索,算法复杂度为O(n)。
C语言实现如下:
//定义结构体部分
//八邻域
static int NeighborDirection[8][2] = {{0,1},{1,1},{1,0},{1,-1},{0,-1},{-1,-1},{-1,0},{-1,1}};
typedef unsigned char Byte;
//定义队列
typedef struct QNode
{
int data;
struct QNode *next;
}QNode;
//采用的链式队列的结构
typedef struct Queue
{
struct QNode* first;
struct QNode* last;
}Queue;
//主调用函数
int ConnectedComponentLabeling(Byte *binaryImage, int width, int height, int *labeImage)
{
int cx, cy, popIndex , labelIndex = 0;
int index;
Queue *queue = NULL;
queue = (Queue*)malloc(sizeof(Queue));
queue->first = NULL;
queue->last = NULL;
/*memset(labelmap, 0, width * height);*/
for(cy = 1; cy < height - 1; cy++)
{
for(cx = 1; cx < width - 1; cx++)
{
index = cy * width + cx;
if(bitmap[index] == 255 && labelmap[index] == 0)
{
labelIndex++;
SearchNeighbor(bitmap, width, height, labelmap, labelIndex, index, queue);
popIndex = PopQueue(queue);
while(popIndex > -1)
{
SearchNeighbor(bitmap, width, height, labelmap, labelIndex, popIndex, queue);
popIndex = PopQueue(queue);
}
}
}
}
free(queue);
return labelIndex;
}
void SearchNeighbor(Byte *bitmap, int width, int height, int *labelmap, int labelIndex, int pixelIndex, Queue *queue)
{
int searchIndex, i, length;
labelmap[pixelIndex] = labelIndex;
length = width * height;
for(i = 0;i < 8;i++)
{
searchIndex = pixelIndex + NeighborDirection[i][0] * width + NeighborDirection[i][1];
if(searchIndex > 0 && searchIndex < length &&
bitmap[searchIndex] == 255 && labelmap[searchIndex] == 0)
{
labelmap[searchIndex] = labelIndex;
PushQueue(queue, searchIndex);
}
}
}
int PopQueue(Queue *queue)
{
QNode *p = NULL;
int data;
if(queue->first == NULL)
{
return -1;
}
p = queue->first;
data = p->data;
if(queue->first->next == NULL)
{
queue->first = NULL;
queue->last = NULL;
}
else
{
queue->first = p->next;
}
free(p);
return data;
}
void PushQueue(Queue *queue, int data)
{
QNode *p = NULL;
p = (QNode*)malloc(sizeof(QNode));
p->data = data;
if(queue->first == NULL)
{
queue->first = p;
queue->last = p;
p->next = NULL;
}
else
{
p->next = NULL;
queue->last->next = p;
queue->last = p;
}
}