第四周 项目五 猴子选大王

66 篇文章 3 订阅
  1. /* 
  2. * Copyright(c) 2017,烟台大学计算机学院 
  3. * All rights reserved. 
  4. * 文件名称:a
  5. * 作    者:张翠平 
  6. * 完成日期:2017 年 9 月 27 日 
  7. * 版 本 号:v1.0 
  8. * 
  9. * 问题描述:一群猴子(m个)按照1-m的顺序围坐一圈,从第一只开始数,每数到第n个,该猴子就要离开此圈,依次下来,直到圈中只剩下最后一只猴子, *         则该猴子为大王。
  10. * 输入描述:输入m和n
  11. * 程序输出:输出为大王的猴子是几号
  12. */  
  13. 问题及代码:
  14. #include <iostream>
    using namespace std;
    struct Monkey
    {
        int num;  //猴子的编号
        struct Monkey *next; //下一只猴子
    };
    
    int main()
    {
        int m,n,i,j,king;
        Monkey *head, *p1,*p2;
        cin>>m>>n;
        if(n==1)
        {
            king=m;
        }
        else
        {
            //建立猴子围成的圆圈
            p1=p2=new Monkey;
            head = p1;
            p1->num=1;
            for(i=1; i<m; i++)  //其余m-1只猴子
            {
                p1=new Monkey;  //p1是新增加的
                p1->num=i+1;
                p2->next=p1;
                p2=p1;          //p2总是上一只
            }
            p2->next=head;      //最后一只再指向第一只,成了一个圆圈
    
            //下面要开始数了
            p1=head;
            for(i=1; i<m; i++)  //循环m-1次,淘汰m-1只猴子
            {
                //从p1开始,数n-1只就找到第n只了
                for(j=1; j<n-1; j++)  //实际先找到第n-1只,下一只将是被淘汰的
                    p1=p1->next;    //围成圈的,可能再开始从第一只数,如果还未被淘汰的话
    
                //找到了,
                p2=p1->next;  //p2将被删除
                //cout<<"第"<<i<<"轮淘汰"<<p2->num<<endl;   //可以这样观察中间结果
                p1->next=p2->next;  //p2就这样被“架空了”
                p1=p2->next;  //下一轮数数的新起点
                delete p2;  //将不在链表中的结点放弃掉
            }
            king=p1->num;
            delete p1;
        }
        cout<<king<<endl;
        return 0;
    }


  15. 运行结果:


            知识点总结:
  1. 循环单链表的应用。
              
            心得体会:
            把理论应用与实践,去解决具体的问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值