- 博客(237)
- 资源 (2)
- 收藏
- 关注
原创 昭通天气数据分析与挖掘(三)- 昭通天气数据可视化分析
本文详细介绍了昭通天气数据的可视化分析过程。首先通过FineBI工具连接MySQL数据库,完成数据选取与字段设置,将英文字段转换为中文并规范数据类型。随后构建了包含气温变化趋势、天气类型分布、风力风向分布等8类可视化图表,最终整合为交互式分析大屏。该大屏支持区域筛选功能,可动态展示昭通、大关、威信等地的气象特征分析结果,直观呈现了当地以阴天为主、风力温和的气候特点。通过多维度数据可视化,为气象规律分析提供了清晰的数据支撑。
2025-12-22 22:49:21
754
原创 昆明天气数据分析与挖掘(三)- 昆明天气数据可视化分析
本文详细介绍了昆明天气数据的预处理与可视化分析过程。首先在FineBI中完成数据上传、字段设置等准备工作,将气温、风向等字段转换为中文并设置合适的数据类型。随后通过折线图、柱形图、饼图等多种可视化形式,对气温变化趋势、风向风力分布、天气类型等维度进行多角度分析,并构建了集成筛选功能的动态分析大屏。分析结果表明,昆明及下属区域气候特征存在差异:主城区气温波动平缓、风力温和,而东川区温差更大、风向集中性显著。该可视化系统有效呈现了区域气象规律,为气候分析提供了直观的数据支撑。
2025-12-20 23:32:06
1097
原创 曲靖天气数据分析与挖掘(二)- 曲靖天气数据预处理
本文以曲靖天气数据为例,详细介绍了数据预处理的全过程。首先配置Python环境并加载数据,初步探索数据基本情况。接着处理重复值、标准化日期格式并提取时间特征,将天气类型简化为晴、雨、雪等大类。通过代码实现数据清洗、特征工程等关键环节,为后续分析和建模提供高质量数据集。预处理后的数据消除了冗余信息,统一了格式,便于开展天气模式分析和预测任务。
2025-12-19 16:21:14
928
原创 昭通天气数据分析与挖掘(二)- 昭通天气数据预处理
本文以昆明天气数据为例,详细介绍了数据预处理的全过程。首先配置Python环境并加载数据,对68103条天气记录进行初步探索。随后通过去重处理消除3101条冗余记录,并对日期字段进行标准化转换和特征提取,衍生出年份、季节等时间维度特征。针对天气类型和风力等级等离散特征,采用分类合并和标准化处理方法,将复杂的原始描述简化为统一类别。预处理后的数据消除了原始数据中的质量问题,提取了有价值的特征,为后续分析和建模提供了高质量的数据基础。
2025-12-15 00:34:43
950
原创 昆明天气数据分析与挖掘(二)- 昆明天气数据预处理
本文介绍了昆明天气数据的预处理流程,包括数据加载、重复值处理、日期特征提取和天气类型简化等关键步骤。通过Python代码实现了数据质量检查、日期标准化(提取年/月/日/季节等特征)以及将复杂天气描述归类为"雨天""雪天"等标准类型。预处理后的数据集消除了冗余信息,结构更加清晰,为后续天气分析和建模提供了高质量的数据基础。整个处理过程注重可复用性,代码模块化设计便于应用于其他城市天气数据的预处理任务。
2025-12-14 21:17:05
916
原创 曲靖天气数据分析与挖掘(一)- 曲靖天气数据采集
本文介绍了使用Python爬取曲靖历史天气数据的方法。通过requests和BeautifulSoup库实现数据采集,从天气后报网站获取各行政区每日气象信息,包括温度、天气类型、风向风力等关键指标。程序采用随机延迟避免反爬,并通过异常处理确保稳定性。采集数据经解析后以CSV格式存储,便于后续分析应用。该方案为气象数据分析提供了可靠的数据源,适用于农业、旅游等领域的研究需求。
2025-12-14 15:32:01
1173
原创 昭通天气数据分析与挖掘(一)- 昭通天气数据采集
本文介绍了使用Python爬取昭通历史天气数据的方法,通过requests和BeautifulSoup库实现网页抓取与解析,将数据规范存储为CSV格式。项目采用模块化设计,包含网络请求、页面解析、数据处理等核心功能,并加入随机延迟避免反爬。程序可自动获取昭通各行政区天气数据,提取日期、昼夜温度、天气类型等关键信息,为后续分析提供高质量数据支持。技术选型注重实用性与健壮性,适合天气数据采集场景需求。
2025-12-13 18:15:41
1351
原创 昆明天气数据分析与挖掘(一)- 昆明天气数据采集
本文介绍了一个使用Python爬取昆明历史天气数据的项目。通过requests和BeautifulSoup库实现网页抓取与解析,提取日期、温度、天气类型和风向风力等关键信息,并使用pandas保存为CSV格式。项目采用模块化设计,包含网络请求工具、页面解析和数据处理等功能模块,确保数据采集的稳定性和完整性。该天气数据可为农业、旅游等领域的分析提供支持。
2025-12-13 15:39:41
1235
原创 聚类算法(一)- K-Means聚类
本文系统梳理 K-Means 聚类核心理论,包括基于误差平方和最小化的迭代原理、关键问题解决方案,详解 scikit-learn 中 KMeans 类的参数配置与评估指标。以鸢尾花数据集为实战案例,完整落地 “数据预处理→最优 k 值确定→模型构建与评估” 全流程。实验确定最优簇数 k=3,聚类结果与鸢尾花真实品种标签高度匹配,核心指标(轮廓系数 0.46、DBI 指数 0.834)验证了聚类有效性,清晰呈现不同簇的形态特征差异,为无监督聚类的理论应用与工程实践提供了可复用模板。
2025-12-03 00:29:35
1103
原创 分类与回归算法(六)-集成学习算法(随机森林、梯度提升决策树)
本文以威斯康星乳腺癌数据集为研究对象,基于随机森林算法开展肿瘤良恶性识别研究。先通过探索性数据分析挖掘细胞核特征与肿瘤性质的关联,筛选出高相关关键特征;采用分层抽样划分训练集与测试集,经网格搜索优化随机森林超参数;最终构建的模型在测试集上准确率达0.9561、AUC值0.9914,混淆矩阵显示误判样本极少。特征重要性分析表明,最差周长、最差半径等形态学特征对分类决策贡献最大,预测概率分布验证模型对两类样本区分度极高。该模型兼具高准确率与临床可解释性,可为乳腺癌辅助诊断提供参考。
2025-11-29 18:34:18
1107
原创 大白菜(一)- 大白菜安装教程
本文介绍了大白菜UEFI启动盘的下载与安装方法。首先通过官网下载V6.0装机版UEFI安装包(约1.37GB),解压后创建桌面快捷方式。启动软件后自动识别U盘,保持默认USB-HDD模式和NTFS格式即可制作启动盘。图文并茂地展示了从下载到安装的完整流程,适合新手快速上手操作。
2025-11-26 16:24:14
528
原创 Navicat安装与连接MySQL教程
Navicat是一款支持多种主流数据库的图形化管理工具,提供可视化界面简化数据库操作。本文介绍了Navicat的下载安装流程:从官网获取64位Windows安装包,按步骤完成安装配置,包括同意协议、选择路径和创建快捷方式等。安装完成后,详细演示了如何连接MySQL数据库:新建连接、填写参数、测试连接,并展示了执行SQL查询的基本操作。整个过程图文并茂,帮助用户快速掌握Navicat的核心使用流程。
2025-11-26 15:14:23
1607
原创 MySQL安装与配置教程(Windows上zip压缩包安装方式)
本文详细介绍了MySQL 8.0的Windows安装流程:从官网下载ZIP安装包,解压后创建data目录和my.ini配置文件;通过管理员命令提示符初始化MySQL并获取临时密码,安装为系统服务后启动;登录后修改root密码并验证;最后配置远程连接权限。整个过程包含关键配置参数说明和常见问题处理提示,适合开发者参考实现完整的MySQL环境部署。
2025-11-26 14:33:52
1417
原创 分类与回归算法(五)- 决策树分类
本文以威斯康星乳腺癌数据集为研究对象,基于决策树分类算法开展肿瘤良恶性识别研究。通过数据探索分析关键特征分布及相关性,筛选出与诊断结果高度相关的核心特征;采用网格搜索结合交叉验证优化决策树参数,融合预剪枝与后剪枝策略避免过拟合;从准确率、混淆矩阵、AUC 值等多维度评估模型性能。结果显示,最优模型准确率达 92.98%,AUC 值为 0.9408,核心特征为肿瘤最差周长、平均凹点等,模型可直观呈现分类逻辑,为乳腺肿瘤临床辅助诊断提供可靠支持,兼顾实用性与可解释性。
2025-11-25 22:51:49
1269
原创 分类与回归算法(六)- 集成学习(随机森林、梯度提升决策树、Stacking分类)相关理论
集成学习通过组合多个基学习器提升模型性能,主要包括并行式(Bagging)、串行式(Boosting)和混合式(Stacking)三类方法。随机森林作为Bagging的代表算法,通过Bootstrap重采样和特征随机选择构建多样化的决策树,再通过投票或平均获得最终预测结果,有效平衡了偏差和方差,具有更强的泛化能力和鲁棒性。集成学习的关键在于基学习器的多样性与一致性的平衡,能够适应不同类型的数据和任务场景。
2025-11-25 13:01:19
865
原创 JDK21安装与配置教程
本文介绍了 Windows 系统下 OpenJDK 21 的下载与环境配置流程,先通过华为云镜像下载适配 Windows x64 的openjdk-21_windows-x64_bin.zip,解压到C:\development目录完成安装;接着通过 “此电脑” 属性进入环境变量设置,新建JAVA_HOME变量(值为 JDK 路径),并在 Path 中添加%JAVA_HOME%\bin;最后通过 cmd 执行java -version,显示 OpenJDK 21 版本信息即验证配置成功,全程操作简洁易执行。
2025-11-24 14:08:23
3118
原创 MySQL(七) - 索引管理
本文围绕 MySQL 索引展开,先介绍索引本质、作用、特点、底层 B + 树结构及适用与不适用场景,再分类说明按功能、物理存储、字段数量划分的索引类型及选择建议。接着提供数据准备的 SQL 脚本,最后详细阐述索引管理操作,包括创建(建表时与建表后)、查看(SHOW INDEX 与 EXPLAIN 分析)、修改(删除旧索引重建新索引)和删除(单索引与批量删除)的语法、参数解释及实操示例,助力优化数据库查询性能,平衡读写效率。
2025-11-20 22:16:32
972
原创 分类与回归算法(四)- 最近邻分类
为实现乳腺肿瘤良恶性精准分类,本研究以威斯康星乳腺癌数据集为对象,构建基于KNN算法的分类模型。通过相关性分析与VIF共线性检验,从30个原始特征中筛选出worst_concavity、area_error、mean_radius 3个核心特征。结合肘部法与网格搜索+5折交叉验证,确定最优超参数:K=3、曼哈顿距离、均匀权重,交叉验证准确率达93.63%。测试集验证显示,模型准确率88.60%,AUC值0.9396,恶性样本召回率85.71%,良性样本精确率91.55%。
2025-11-19 18:08:45
786
原创 Seaborn(一) - Seaborn绘图方法介绍
Seaborn提供了系统化的数据可视化方法体系,主要涵盖六大类绘图功能:分布型绘图(如直方图、核密度图)用于探索变量分布特征;分类型绘图(如箱线图、小提琴图)专注于分类数据的组间比较;矩阵型绘图(如热力图、聚类图)展现变量间关联和数据结构;关系型绘图(如散点图、折线图)揭示变量间的相关模式;回归型绘图分析变量间的统计关系;多图网格系统(如分面网格、配对图)支持复杂数据的多维度对比分析。这些方法通过简洁的API实现了统计图形的高效创建,特别适合数据探索和结果展示。
2025-11-15 23:41:10
692
原创 MySQL(六) - 视图管理
MySQL视图是一种虚拟表,不存储实际数据,而是基于预定义的SELECT查询动态生成结果。它具备简化复杂查询、控制数据访问权限、保持接口兼容等特点,能够有效提升数据库操作的安全性和可维护性。在视图管理方面,支持通过CREATE VIEW创建视图,使用DESC查看结构,通过ALTER VIEW修改定义,以及使用DROP VIEW删除视图。在满足特定条件时,还可通过视图对基础表进行增删改操作。合理使用视图能够隐藏底层表结构,优化查询效率,是数据库管理中的重要工具。
2025-11-13 21:50:29
934
原创 分类与回归算法(三)- 逻辑回归
逻辑回归是一种广泛应用于二分类问题的监督学习算法,通过Sigmoid函数将线性输出转换为概率值实现分类。其核心优势包括模型可解释性强、训练效率高和预测稳定可靠。文章详细阐述了逻辑回归的理论基础,包括Sigmoid函数的作用、概率模型构建、损失函数设计(交叉熵损失),以及其典型应用场景如金融风控、医疗诊断和互联网用户行为预测等。最后以鸢尾花数据集为例,介绍了逻辑回归的实现步骤,展示其处理多分类问题的能力。该算法凭借简洁高效的特点,成为数据科学领域的基础工具之一。
2025-11-08 00:24:21
1474
1
原创 分类与回归算法(二) - 线性回归
线性回归是一种通过构建特征与目标值之间线性关系进行预测的模型,适用于房价预测、销售额分析等连续数值预测场景。其核心原理是通过损失函数(如均方误差MSE)衡量预测偏差,并利用优化算法(正规方程或梯度下降)求解最优权重和截距。实现步骤包括数据收集、预处理、模型训练与评估,适用于样本量适中、特征间呈线性关系的任务,但在高度非线性场景(如股价预测)中效果有限。
2025-11-04 21:04:12
1278
原创 分类与回归算法(一)- 模型评价指标
本文系统介绍了分类与回归算法的核心原理、适用场景及优缺点,重点分析了常用分类算法(逻辑回归、决策树、SVM、随机森林)和回归算法(线性回归、岭回归/Lasso回归、决策树回归、GBDT)。针对分类任务,详细阐述了基于混淆矩阵的评价指标体系,包括准确率、精确率、召回率和F1分数,通过数学公式说明其计算方法,并结合实际业务场景(如医疗诊断、金融风控)分析各指标的适用性与权衡关系。文章为机器学习模型选择与评估提供了全面的方法论指导。
2025-11-02 23:14:38
840
原创 MySQL(五) - 数据连接查询和子查询操作
本文先构建 test001 学生课程数据库,创建 student(学生)、course(课程)、student_course(选课)表,通过存储过程各插入 500 条数据并验证数量。接着解析 SQL 查询语法,涵盖基础查询及内连接、左外连接等 JOIN 连接查询的语法与特性。随后结合实例展示数据连接查询(如内连接查选课信息)、子查询(含标量、列、表子查询)、集合运算查询(UNION 等及 MySQL 替代方案)的具体应用,完整呈现学生课程场景下 SQL 查询的实操方法,为相关数据库操作提供参考。
2025-10-30 23:14:20
1008
原创 MySQL(四) - 数据查询操作
摘要:本文介绍了在MySQL数据库中创建学生选课系统的完整过程。首先在test001数据库中创建了三个表:学生表(student)、课程表(course)和选课关系表(student_course),并设置了主键、外键、唯一约束和检查约束等保证数据完整性。然后通过存储过程批量插入500条学生数据和500条课程数据,采用随机生成方式模拟真实场景。学生表包含学号、姓名、专业等基本信息,课程表包含课程编号、名称、学分等字段,选课表则建立学生与课程的多对多关系。整个系统设计规范,为后续查询操作提供了完整的数据基础。
2025-10-21 19:06:11
976
原创 MySQL(三) - 表中数据增删改操作
文章摘要: 本文详细介绍了MySQL中数据操作的两种核心语句:INSERT INTO 用于向表中添加数据,支持单条和多条记录插入;UPDATE 用于修改表中符合条件的记录,强调必须谨慎使用WHERE条件避免误操作。通过具体示例展示了如何插入学生、课程及选课数据,并演示了更新学生信息的方法。文中还总结了最佳实践,包括明确列名、批量插入、事务处理和数据验证等,帮助读者安全高效地进行数据库操作。
2025-10-12 23:03:36
867
2
原创 MySQL(二) - 数据表管理
本文介绍了MySQL数据类型和约束条件的关键内容。数据类型部分详细列出了数字、字符串、时间日期、二进制等类型的特点及使用场景,特别强调精确数值应使用DECIMAL、状态字段适合ENUM等实用建议。约束条件部分解析了主键、非空、唯一、外键等约束的作用机制,包括主键的自动索引、外键的引用完整性保障等核心功能。全文通过表格对比形式清晰呈现各类数据属性和约束规则,为数据库设计提供实用参考。
2025-10-10 17:47:07
1111
1
原创 Python解释器安装配置教程(Windows)
本文详细介绍了Python解释器的下载、安装、验证和卸载全流程。主要内容包括:1)从华为云镜像下载指定版本Python;2)安装过程中的关键配置选项(如添加环境变量、自定义安装路径等);3)通过命令行验证安装是否成功;4)查看已安装Python版本;5)通过控制面板卸载Python程序。文章配有详细操作截图,指导用户完成Python环境配置的全过程,适合Python初学者参考使用。
2025-09-09 16:42:45
1503
原创 Python网络爬虫(三) - 爬取动态网页数据
本文介绍了动态网页及Selenium技术,详细讲解了Selenium的安装与WebDriver配置流程。主要内容包括:1)动态网页与静态网页的区别,2)Selenium库的安装及验证方法,3)Chrome/Edge浏览器驱动的下载与配置指南,4)WebDriver的基本操作(启动/关闭浏览器、页面导航、窗口控制等)。通过代码示例演示了如何实现网页自动化操作,为动态网页爬虫开发提供了完整的技术解决方案。(150字)
2025-08-19 16:32:06
2072
原创 Python网络爬虫(二) - 解析静态网页
本文聚焦网页解析技术及 Python 解析库 Beautiful Soup 的应用。网页解析是爬虫核心,Beautiful Soup 凭借强容错性、直观操作和多解析器支持成为主流工具,文中对比了html.parser、lxml、html5lib等解析器的特点与安装方法。其使用流程为创建对象(传入网页内容与解析器)、获取标签(通过标签名、find()/find_all()方法及 CSS 选择器)、提取数据(借助text等文本属性和get()等属性方法)。
2025-08-14 23:47:33
3211
原创 Python网络爬虫(一) - 爬取静态网页
本文介绍了静态网页爬取技术及Requests库的使用方法。主要内容包括:1)静态网页概念及其特点;2)Requests库的安装步骤;3)发送GET和POST请求的方法详解,包含参数说明和示例代码。文章重点讲解了requests.get()和requests.post()的使用,涉及URL构建、请求头设置、参数传递等核心操作,并提供了豆瓣图书网页请求的实战案例。通过本文可以快速掌握使用Python Requests库进行静态网页数据抓取的基本技能。
2025-08-11 19:07:13
1831
原创 Fiddler 安装配置教程
本文详细介绍了Fiddler网络调试工具的下载、安装及配置方法。首先通过官网下载Fiddler Classic版本,完成安装并运行。随后对Fiddler界面功能进行说明,包括菜单栏、工具栏和主要功能面板区的作用。重点讲解了如何配置HTTPS抓包功能,包括信任Fiddler根证书和允许远程连接等设置,使Fiddler能够捕获并解密HTTPS流量。该教程为网络调试人员提供了完整的Fiddler使用指南。
2025-08-07 18:42:57
4687
原创 Matplotlib(六)- 坐标轴定制
本文详细介绍了Matplotlib中坐标轴(Axes)的核心概念和使用方法。主要内容包括:1)坐标轴的定义与组成要素,区分Axes与Axis的区别;2)坐标轴属性表,涵盖刻度、标签、标题等关键属性;3)axes()方法详解,展示如何创建常规、极坐标和3D坐标系;4)刻度系统的定制方法,包括多种内置定位器(MicrosecondLocator到YearLocator)的使用场景和参数说明,通过示例代码演示了多坐标系创建和刻度定制技巧。
2025-08-05 20:01:24
911
原创 Matplotlib(五)- 绘制子图
子图(Subplot)是数据可视化中高效展示多组数据的工具,通过将多个图表排布在同一画布实现对比分析。Matplotlib支持网格布局(规则排列)和自由布局(灵活排布)两种方式。网格布局通过plt.subplots()或plt.subplot()创建行列固定的子图,适合批量处理;自由布局用plt.axes()或Figure.add_axes()自定义位置和大小,灵活性更高。子图能有效提升空间利用率,适用于多数据对比、多维度分析和复杂图表整合。
2025-08-02 12:26:45
1321
原创 Matplotlib(四)- 图表样式美化
Matplotlib图表样式管理摘要(150字): Matplotlib提供灵活的图表样式配置功能,包括默认样式查看与修改方式。通过rc_params()可获取全局默认配置,涵盖字体、线条、坐标轴等参数。样式修改分为局部和全局两种:局部修改可通过绘图函数参数(如linewidth)或临时调整rcParams实现,仅影响当前图表;全局修改则需更新rcParams默认值。合理设置样式能提升图表可读性与美观度,适应不同展示场景需求。内置样式库和自定义配置功能为用户提供了高度的可视化控制能力。
2025-07-30 16:39:10
1523
原创 Matplotlib(三)- 图表辅助元素
图表辅助元素是数据可视化的关键组成部分,包括标题、坐标轴标签、图例、网格线等,它们能显著提升图表的可读性和信息完整性。本文详细介绍了Matplotlib中各类辅助元素的作用、使用场景及代码实现方法,重点讲解了坐标轴标签的设置(xlabel/ylabel)和刻度范围调整(xlim/ylim),并通过气温折线图案例展示了具体应用。掌握这些辅助元素的配置技巧,可以帮助开发者创建更专业、清晰的数据可视化图表。
2025-07-28 20:51:12
1293
原创 Matplotlib(二)- Matplotlib简单绘图
在 Matplotlib 的世界里,pyplot 模块就像是一把功能强大的绘图瑞士军刀,是我们进行数据可视化操作时最常用的接口。它提供了一套与 MATLAB 类似的绘图函数集合,让开发者能够以简单直观的方式创建各种类型的图表。pyplot 模块的设计理念是将绘图过程分解为一系列简单的步骤,通过调用不同的函数来逐步构建图表。从创建画布、绘制图形元素,到设置坐标轴、添加标题和图例,再到保存或显示图表,每一个环节都有对应的函数可供使用。
2025-07-27 13:05:48
1091
原创 Anaconda3安装教程(Windows)
Anaconda是一款集成了Python/R语言及常用数据科学工具的开源发行版,内置conda包管理和虚拟环境功能。安装过程包括从清华镜像下载安装包,按步骤完成安装配置,建议勾选创建桌面快捷方式和添加环境变量。安装后提供Anaconda Navigator图形界面、命令行工具以及Jupyter Notebook等组件,其中Jupyter Notebook作为交互式计算环境,可通过浏览器访问其UI界面进行代码编写和数据分析。Anaconda能够快速搭建完整的数据科学开发环境,适合各类用户使用。
2025-07-13 14:01:19
1837
原创 Matplotlib(一)- 数据可视化与Matplotlib
本文介绍了数据可视化的基本概念与常用图表类型,并总结了Python中主流可视化工具库的特点。数据可视化通过图形化呈现数据规律与趋势,核心流程包括数据读取、图表选择、绘制与保存。常见图表如折线图、柱形图、散点图等各有适用场景,能直观展示趋势、对比、分布等不同数据特征。
2025-07-13 12:43:50
1070
原创 基于Pandas和FineBI的昆明职位数据分析与可视化实现(五) - 基于随机森林算法预测职位分类
基于随机森林的职位分类预测分析 摘要:本研究采用随机森林算法构建职位分类预测模型,处理昆明地区非结构化招聘文本数据。通过集成多维度特征(职位名称、公司信息、行业类别和技能要求),建立高准确度的分类预测系统。分析流程包括数据加载、预处理、特征工程、模型训练与评估等环节,综合运用准确率、精确率、召回率等指标评估性能。研究特别关注模型的可解释性,通过特征重要性分析和混淆矩阵可视化揭示分类规律。实验结果表明,随机森林算法在该分类任务中表现优异,既能处理复杂特征关系,又能提供业务可理解的决策依据。
2025-07-06 22:03:32
1249
昆明职位数据集,包含 17731 行、17 列数据
2025-07-12
豆瓣图书数据集 129839 行
2025-04-04
上海餐饮数据集+基于Python的上海餐饮数据可视化分析+聚类分析
2025-03-29
1905电影网中国地区电影数据集(27511行数据)
2025-01-11
1905电影数据集(27534行)
2025-01-11
豆瓣图书数据集+数据分析
2025-01-09
Spark-Streaming+HDFS实战
2023-12-16
Spark-Streaming+Kafka+mysql实战示例
2023-12-12
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅