自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(163)
  • 资源 (2)
  • 收藏
  • 关注

原创 Python - NumPy基础使用教程

NumPy(Numerical Python)是Python中用于科学计算的核心库之一。它提供了高性能的多维数组对象和用于处理这些数组的工具。NumPy是许多其他科学计算库的基础,如Pandas、SciPy、Matplotlib等。本文从NumPy的基础知识开始,逐步深入,介绍了NumPy数组的创建、索引与切片、数学运算、广播机制、线性代数运算、随机数生成、文件操作以及性能优化等内容。希望通过本文的学习,你能够掌握NumPy的核心功能,并能够在实际项目中灵活运用。

2025-02-12 17:04:58 591

原创 HiveQL命令(三)- Hive函数

在大数据处理和分析的过程中,数据的转换和处理是至关重要的环节。Apache Hive作为一种流行的数据仓库工具,提供了丰富的内置函数,帮助用户高效地处理和分析存储在Hadoop分布式文件系统(HDFS)中的数据。这些内置函数涵盖了数值计算、字符串处理、日期与时间操作、条件判断、聚合计算、集合处理、类型转换以及用户定义的表生成函数(UDTF)等多个方面。本篇文章将详细介绍Hive中的内置函数,包括它们的功能、用法和示例。通过对这些函数的深入理解,用户可以更灵活地进行数据查询和分析,提升数据处理的效率和准确性。

2025-02-09 22:10:49 1211

原创 HiveQL命令(二)- 数据表操作

在大数据时代,数据的存储与管理变得尤为重要。Apache Hive作为一种数据仓库工具,提供了一种方便的方式来处理和分析存储在Hadoop分布式文件系统(HDFS)中的大规模数据。通过Hive,用户可以使用类似SQL的查询语言(HiveQL)来执行数据操作,而无需深入了解底层的MapReduce编程模型。本篇文章将详细介绍Hive中数据表的操作,包括创建、查看、修改和删除表的基本语法和示例。我们还将探讨分区表和分桶表的概念及其在优化查询性能方面的重要性。此外,临时表的使用场景和创建方法也将被涵盖。

2025-02-09 18:37:58 1108

原创 1905电影网中国地区电影数据分析(二) - 数据分析与可视化

在数据科学的领域,数据分析和可视化是理解和解释数据的重要工具。通过对数据的深入分析,我们能够揭示潜在的趋势、模式和关系,从而为决策提供有力支持。本项目旨在对从1905电影网爬取的电影数据进行全面的数据分析与可视化,帮助我们更好地理解电影行业的动态和特征。本项目的分析分为几个主要部分:描述性分析、类别分布分析、模式识别分析、时间序列分析和相关性分析。我们将使用Python的Pandas库进行数据处理,并通过SQLAlchemy将分析结果存储到MySQL数据库中。

2025-01-25 14:12:22 862

原创 1905电影网中国地区电影数据分析(一) - 数据采集、清洗与存储

本项目旨在通过爬取1905电影网的电影数据,展示如何使用Python及相关库进行网页数据采集。本项目将详细介绍数据采集的步骤,包括所需的Python库版本、网页分析、数据提取和保存等环节。我们将使用requests库进行网络请求,利用BeautifulSoup进行HTML解析,并将最终的数据保存为CSV文件,便于后续分析和处理。

2025-01-22 21:19:13 1730

原创 Python数据处理(三)- Pandas 数据清洗

本书旨在为读者提供一个全面的指南,涵盖了使用 Pandas 进行数据清洗的各个步骤和方法。通过详细的解释和示例代码,读者将能够掌握如何检测和处理缺失值、识别和删除重复数据、处理异常值、进行数据格式转换,以及如何选择和过滤数据。这些技能将为后续的数据分析和建模打下坚实的基础。

2025-01-19 11:30:00 800

原创 Python数据处理(二)- Pandas 文件操作

在第一部分,我们将详细介绍 CSV 文件的操作,包括如何读取和写入 CSV 文件,以及如何处理缺失值和自定义分隔符。接着,我们将探讨 Excel 文件的处理,涵盖从读取到写入的各个方面,帮助读者掌握 Excel 文件的操作技巧。最后,我们将介绍 JSON 文件的读取和写入,展示如何在数据交换中有效使用这种轻量级的数据格式。

2025-01-17 20:05:37 880

原创 Python数据处理(一)- Pandas 安装与数据结构介绍

在当今数据驱动的世界中,有效地处理和分析数据已成为众多领域不可或缺的一部分。从科学研究到商业决策,数据分析能力为理解复杂现象、发现模式以及做出明智选择提供了坚实的基础。随着大数据时代的到来,对高效且易于使用的数据处理工具的需求日益增长。Pandas 应运而生,作为一个强大的开源数据处理与分析库,它专为 Python 编程语言设计,旨在简化结构化数据分析流程。

2025-01-15 17:27:08 1127

原创 Hadoop - MapReduce编程

在当今数据驱动的时代,大数据的概念已经深入人心。随着信繁多,包括结构化数据、半结构化数据和非结构化数据。如何有效地处理、分析和利用这些数据,成为了各行各业亟待解决的问题。MapReduce是一种编程模型和处理框架,旨在简化大规模数据集的处理。本篇文章将详细介绍如何创建一个简单的MapReduce项目息技术的快速发展,企业和组织面临着海量数据的挑战。这些数据不仅体量庞大,而且种类,并使用MapReduce编程模型实现一个基本的词频统计功能。

2025-01-10 18:14:51 1144

原创 HDFS编程 - 使用HDFS Java API进行文件操作

本文将详细介绍如何使用Java编程语言与HDFS进行交互。我们将通过创建一个简单的Maven项目,逐步演示HDFS的常用Java API,包括创建目录、上传和下载文件、查看文件内容、删除文件等操作。通过这些示例,读者将能够掌握基本的HDFS操作,并为后续的大数据处理打下坚实的基础。Hadoop分布式文件系统(HDFS)是Apache Hadoop的核心组件之一,设计用于存储大量的数据,并提供高吞吐量的数据访问。

2025-01-09 16:52:24 822

原创 Python爬虫 - 豆瓣图书数据爬取、处理与存储

在数字化时代,网络爬虫技术为我们提供了强大的数据获取能力,使得从各类网站提取信息变得更加高效和便捷。豆瓣读书作为一个广受欢迎的图书评价和推荐平台,汇聚了大量的书籍信息,包括书名、作者、出版社、评分等。这些信息不仅对读者选择图书有帮助,也为出版商和研究人员提供了宝贵的数据资源。本项目旨在通过 Python 爬虫技术,系统性地抓取豆瓣读书网站上的图书信息,并将其存储为结构化的数据格式,以便后续分析和研究。我们将使用 requests 和 BeautifulSoup 库进行网页请求和数据解析,利用 pandas

2025-01-04 23:26:32 1581

原创 Python爬虫 - 豆瓣电影排行榜数据爬取、处理与存储

在当今数据驱动的时代,信息的获取与分析变得尤为重要。电影作为一种广受欢迎的文化产品,其相关数据的挖掘与分析不仅能帮助观众更好地选择影片,还能为电影行业提供有价值的市场洞察。本文将详细介绍如何利用 Python 爬虫技术从豆瓣电影网站获取电影排行榜数据,并将其存储到 MySQL 数据库中,以便后续进行统计分析和探索性数据分析(EDA)。我们将首先分析爬取的需求,明确要获取的电影分类及其详细信息。

2024-12-30 22:55:30 1678 2

原创 Python爬虫(三)- BeautifulSoup 安装与使用教程

本篇文章将详细介绍BeautifulSoup的基本概念、安装步骤、解析器的比较,以及如何使用该库解析HTML文档。我们将通过实际示例演示如何使用BeautifulSoup获取标签、属性和内容,帮助读者快速上手并应用于实际项目中。是一个用于解析 HTML 和 XML 文档的 Python 库,它帮助你从网页中提取数据。这个库非常灵活,并且可以与多种不同的解析器一起工作,比如 Python 内置的lxml或者html5lib。pythonrequestsbs4soupsievelxml版本。

2024-12-29 23:01:41 1566

原创 Python爬虫(二)- Requests 高级使用教程

在现代网络应用中,HTTP 请求和响应的处理是至关重要的。Python 的 requests 库以其简洁易用的接口,成为了开发者进行网络请求的首选工具。无论是简单的 GET 请求,还是复杂的身份认证、会话管理、代理设置,requests 都能轻松应对。本文将深入探讨 requests 库的各个方面,包括 Session 对象的使用、请求与响应的处理、SSL 证书验证、流式上传和请求、代理配置、编码方式处理以及身份认证等。Session 对象允许跨多个请求保持某些参数不变。

2024-12-29 13:57:41 1635

原创 Python爬虫(一)- Requests 安装与基本使用教程

本篇文章将详细介绍 requests 库的基本用法,包括安装、发送请求、处理响应、传递参数等内容。通过这些内容,读者将能够掌握如何使用 requests 库进行高效的网络请求,从而为后续的项目开发打下坚实的基础。希望本文能帮助您更好地理解和应用 requests 库,提升您的 Python 编程技能。requests是一个用于发送HTTP请求的Python库,它简化了与Web服务交互的过程,使开发者能够轻松地构建和解析HTTP请求和响应。其简洁易用的API设计使得即使是初学者也能快速上手。python。

2024-12-28 20:53:10 1480

原创 hdfs命令(三)- hdfs 管理命令(三)- hdfs dfsadmin命令

本文档旨在详细介绍 hdfs dfsadmin 的主要功能及其使用方法,帮助读者更好地掌握如何利用这一工具来管理和优化HDFS集群。我们将按照不同的类别组织命令,并提供详细的语法说明和实际应用示例,以便于读者快速查找所需信息并应用于实践当中。是Hadoop分布式文件系统(HDFS)提供的一个管理工具,主要用于执行与HDFS集群管理和维护相关的各种操作。这些命令通常需要以HDFS超级用户的身份运行,因为它们涉及到对整个文件系统的控制和配置调整。

2024-12-27 22:40:09 1001

原创 hdfs命令(三)- hdfs 管理命令(二)- hdfs crypto命令

本文旨在详细介绍如何使用命令行工具来管理这些加密区域,包括创建、列出、启用垃圾回收、获取加密信息、重新加密以及监控重新加密状态等操作。命令是Hadoop分布式文件系统(HDFS)中用于管理和操作加密区域(Encryption Zones, EZs)的工具。它允许用户创建、列出和管理加密区域,以及处理与加密相关的其他任务。

2024-12-27 12:59:58 624

原创 hdfs命令(三)- hdfs 管理命令(一)- hdfs cacheadmin命令

本文介绍hdfs cacheadmin命令的使用方法及其各个子命令的具体功能,帮助读者理解如何高效地管理和配置HDFS缓存,从而根据实际需求定制缓存策略。命令提供了一系列子命令用于管理和配置HDFS缓存。

2024-12-27 12:57:24 1190

原创 hdfs命令(二)- hdfs --daemon命令

在大数据时代,Hadoop分布式文件系统(HDFS)作为核心组件之一,承担着存储和管理海量数据的重任。为了确保HDFS的高可用性和稳定性,系统中运行着多个守护进程(daemons),每个守护进程负责特定的功能和任务。这些守护进程包括NameNode、DataNode、Secondary NameNode、JournalNode等,它们共同协作,维护HDFS的正常运行。本文将探讨HDFS中的hdfs --daemon命令,介绍如何启动、停止和管理这些守护进程。

2024-12-22 16:51:59 1223

原创 hdfs命令(一)- hdfs dfs命令

Hadoop分布式文件系统(HDFS)是一种基于Java的,设计用于存储和处理大规模数据集的文件系统。由于其可靠性和高效的存储能力,HDFS在大数据处理领域中得到了广泛应用。掌握HDFS的常用命令可以使用户高效地管理和操作文件系统中的数据。本文将详细介绍HDFS的基本命令和其用法,包括如何创建目录、上传和下载文件、文件管理操作(如移动、重命名和删除)、权限与所有权管理等。通过示例讲解,读者将能够直观理解每个命令的作用及其应用场景,同时附上相关示例。

2024-12-22 11:30:00 1006

原创 Hadoop生态圈框架部署(十二)- FineBI个人试用版安装与配置

在当今数据驱动决策的时代,商业智能(BI)工具成为了企业理解和利用其数据资产的重要手段。FineBI是一款强大的自助式数据分析和可视化平台,它允许用户轻松地连接到各种数据源,进行复杂的数据分析,并以直观的图表和报表形式展示分析结果。这不仅提高了工作效率,还为决策者提供了更深入的数据洞察。本指南旨在帮助您顺利完成FineBI(Windows版本)的安装与基本配置,以便您可以尽快开始使用这款强大且灵活的BI工具来探索您的数据。

2024-12-16 10:33:07 1170

原创 Hadoop生态圈框架部署(十一)- Sqoop安装与配置

随着大数据技术的迅猛发展,数据在不同系统之间的迁移和整合成为了企业级应用中的常见需求。Hadoop作为处理大规模数据集的开源框架,提供了强大的分布式计算能力,而关系型数据库(如MySQL)则因其事务处理能力和结构化查询语言(SQL)的支持,在数据管理和分析中占据着不可替代的位置。然而,如何高效地在Hadoop与传统关系型数据库之间进行数据传输,成为了众多开发者和企业面临的挑战。Apache Sqoop正是为了解决这一问题而诞生的工具。

2024-12-15 22:12:23 994 1

原创 HiveQL命令(一)- 数据库操作

本指南旨在提供一份全面而详细的 Hive 数据库操作手册,帮助读者深入理解并熟练运用 Hive 中的数据库管理命令。我们将从最基础的创建数据库开始,逐步介绍如何查看现有数据库及其信息、切换当前使用的数据库、修改数据库属性及位置,直到最后讲解如何删除不再需要的数据库。

2024-12-13 23:10:55 1293

原创 Hadoop生态圈框架部署 伪集群版(十)- DolphinScheduler伪分布式部署

在当今快速发展的大数据时代,数据处理和分析的需求日益增长。为了满足这些需求,各种各样的工具和技术应运而生,其中分布式任务调度系统扮演着至关重要的角色。Apache DolphinScheduler 是一款开源的分布式易扩展的工作流任务调度系统,它以可视化的方式管理和调度复杂的任务依赖关系,适用于多种业务场景下的定时任务编排。随着DolphinScheduler社区的不断壮大和发展,版本迭代也愈加频繁,功能愈发强大。

2024-12-10 23:03:21 994

原创 Hadoop生态圈框架部署 伪集群版(九)- FineBI个人试用版安装与配置

在大数据分析和业务决策的过程中,数据可视化工具起到了至关重要的作用。FineBI作为一款功能强大的商业智能(BI)平台,提供了丰富的数据处理、分析和可视化功能,帮助企业从大量的数据中提取有价值的洞察。对于Linux用户来说,FineBI的安装和配置过程可能略显复杂,但只要按照正确的步骤进行操作,便可以顺利地搭建起适用于企业需求的数据决策平台。本文将详细介绍如何在Linux环境下安装并配置FineBI,涵盖从安装包的下载、系统环境的配置,到FineBI服务的启动与数据库连接等各个方面。

2024-12-09 11:24:58 960

原创 Hadoop生态圈框架部署 伪集群版(八)- Sqoop安装与配置

随着大数据技术的迅猛发展,数据在不同系统之间的迁移和整合成为了企业级应用中的常见需求。Hadoop作为处理大规模数据集的开源框架,提供了强大的分布式计算能力,而关系型数据库(如MySQL)则因其事务处理能力和结构化查询语言(SQL)的支持,在数据管理和分析中占据着不可替代的位置。然而,如何高效地在Hadoop与传统关系型数据库之间进行数据传输,成为了众多开发者和企业面临的挑战。Apache Sqoop正是为了解决这一问题而诞生的工具。

2024-12-07 23:02:18 1035

原创 Hadoop生态圈框架部署 伪集群版(七)- Hive部署

随着大数据技术的不断发展,数据处理和分析的需求日益增长。Apache Hive作为基于Hadoop的一个数据仓库工具,能够极大地简化对大规模数据集的查询和管理过程。它允许用户使用类似于SQL的HiveQL语言查询数据,这使得那些熟悉关系型数据库管理系统(RDBMS)的开发者可以轻松地转移到大数据平台上来。本指南旨在为想要在Linux环境中手动部署和配置Apache Hive 3.1.3的读者提供一个详尽的操作步骤集合。我们将从下载安装包开始,一直到成功启动Hive服务,并确保其能够稳定运行。

2024-12-07 21:11:22 1911 2

原创 Hadoop生态圈框架部署(九-2)- Hive HA(高可用)部署

在大数据处理领域,Hive 是一个强大的数据仓库工具,能够提供数据的查询、分析和管理功能。它基于 Hadoop 构建,允许用户使用类似 SQL 的查询语言(HiveQL)来操作存储在 Hadoop 分布式文件系统(HDFS)中的数据。本文将详细介绍如何手动部署 Hive 3.1.3,包括从下载、安装到配置的每一个步骤。此外,我们还将探讨如何在多台虚拟机上实现 Hive 的高可用性(HA),确保在集群环境中能够稳定高效地运行 Hive 服务。

2024-12-06 22:15:12 1466

原创 Hadoop生态圈框架部署(十)- Flume部署

在大数据处理和分析的生态系统中,日志数据和其他形式的数据流收集是构建可靠数据管道的关键环节。Apache Flume作为一种高效、可靠的服务,专为收集、聚合和移动大量日志数据而设计,成为了众多企业和开发者进行数据采集的首选工具。它不仅能够满足实时数据流的传输需求,还支持灵活的数据源接入和多种输出方式,适用于从不同来源捕获数据并将其加载到Hadoop等系统中进行进一步分析。本文旨在为用户提供一份详细的Flume 1.9.0手动部署教程,涵盖从下载、上传、解压、配置到环境变量设置的每一个步骤。

2024-12-04 21:44:42 1358

原创 Hadoop生态圈框架部署 伪集群版(六)- MySQL安装配置

在本文中,我们将通过一系列步骤来安装和配置MySQL数据库服务器。MySQL是一个广泛使用的开源关系型数据库管理系统,支持多种操作系统平台。本指南将指导您如何在基于Linux的系统上(以CentOS 7为例)完成MySQL的安装与基础配置,并设置远程访问权限。

2024-12-03 17:12:04 900

原创 Hadoop生态圈框架部署 伪集群版(五)- HBase伪分布式部署

本文将详细介绍HBase的伪分布式部署过程,包括从下载和安装到配置和启动的每一个步骤。通过手动部署,读者将能够深入理解HBase的配置文件及其参数设置,从而为后续的集群管理和应用开发打下坚实的基础。

2024-12-03 13:00:47 1461

原创 Hadoop生态圈框架部署 伪集群版(四)- Zookeeper单机部署

本文将详细介绍Zookeeper的单机部署过程,包括从下载安装包到启动和停止服务的每一个步骤。通过手动部署,读者将深入了解Zookeeper的配置文件及其参数设置,从而为后续的集群搭建和应用开发打下坚实的基础。

2024-12-03 11:50:48 779

原创 Hadoop生态圈框架部署 伪集群版(三)- Hadoop伪分布式部署

本文将详细介绍Hadoop的伪分布式部署过程,包括手动部署和使用脚本自动部署两种方式。通过手动部署,读者将能够深入理解Hadoop的各个组件及其配置文件的作用,从而为后续的集群管理和优化打下坚实的基础。而使用脚本自动部署则能够提高安装效率,简化操作步骤,适合需要快速搭建Hadoop环境的用户。

2024-12-03 10:26:18 986

原创 Hadoop生态圈框架部署 伪集群版(二)- 环境准备

本文档旨在为读者提供一份详尽的指南,以指导如何在Linux系统上设置一个基本的Hadoop开发环境。我们将从基础开始,逐步介绍如何配置IP地址与主机名映射、实现虚拟机间的免密登录、创建必要的目录结构以及安装并配置JDK 1.8等关键步骤。通过遵循本指南中的说明,您将能够搭建起一个准备就绪的Hadoop工作环境,为后续的大数据处理任务奠定坚实的基础。

2024-12-02 23:08:32 925

原创 Hadoop生态圈框架部署 伪集群版(一)- Linux操作系统安装及配置

本指南旨在帮助读者从零开始,在个人计算机上通过VMware Workstation创建并配置一个基于CentOS操作系统的虚拟机,用于构建Hadoop的学习和测试环境。本文档详细记录了从下载CentOS镜像、创建虚拟机、安装CentOS操作系统,到配置虚拟网络、安装SSH远程管理工具FinalShell以及相关环境设置的全过程。通过本指南,读者可以轻松地搭建起自己的Hadoop实验平台,为进一步深入学习Hadoop及相关大数据技术打下坚实的基础。

2024-12-02 22:36:48 1051

原创 Hadoop生态圈框架部署(八)- Hadoop高可用(HA)集群部署

在当今大数据时代,Hadoop作为一种强大的分布式计算框架,广泛应用于海量数据的存储与处理。为了确保系统的高可用性和可靠性,Hadoop引入了高可用性(HA)架构,通过部署多个NameNode和ResourceManager,实现故障转移和负载均衡。本篇文章将详细介绍如何在虚拟机环境中手动部署Hadoop高可用集群,包括环境准备、配置文件修改、服务启动与测试等步骤。通过本指南,读者将能够掌握Hadoop HA集群的搭建过程,为后续的大数据应用打下坚实的基础。

2024-12-01 00:26:03 1966

原创 Hadoop生态圈框架部署(九)- Hive部署

随着大数据技术的快速发展,Hive作为一种数据仓库工具,在处理大规模数据集时展现了其独特的优势。它基于Hadoop分布式文件系统(HDFS)之上提供了一种类似SQL的查询语言——HiveQL,使得熟悉关系型数据库的开发者能够轻松地进行数据查询和分析。此外,Hive还支持数据汇总、即席查询以及数据分析等任务,成为企业级数据处理解决方案中的重要组成部分。本教程旨在为读者提供一份详尽且易于理解的Hive部署教程。

2024-11-27 10:44:31 1641

原创 Hadoop生态圈框架部署(七)- MySQL安装与配置教程

随着信息技术的飞速发展,数据管理成为企业信息化建设中不可或缺的一部分。作为最流行的关系型数据库管理系统之一,MySQL 凭借其开源、高性能、高可靠性和易于使用的特性,在全球范围内获得了广泛的应用。无论是小型网站还是大型企业应用,MySQL 都能够提供强大的支持。然而,对于初次接触 MySQL 或者需要在特定环境中部署 MySQL 的技术人员来说,正确的安装与配置方法是确保数据库系统稳定运行的关键。本文档旨在为读者提供一份详尽的 MySQL 手动安装与配置指南,特别针对 Linux 环境下的部署。

2024-11-18 09:54:14 1394

原创 Hadoop生态圈框架部署(六)- HBase完全分布式部署

随着大数据技术的不断发展,HBase 作为 Hadoop 生态系统中的重要组件,因其出色的性能和可扩展性而受到广泛欢迎。本文将详细介绍 HBase 在完全分布式环境下的安装与配置过程。我们将从环境准备、软件下载、配置文件修改到集群启动等多个环节进行逐一讲解,确保读者能够顺利搭建起自己的 HBase 分布式集群。通过本文的学习,读者不仅能够掌握 HBase 的安装步骤,还能了解其核心配置项的意义和作用,为后续的数据存储与管理打下坚实的基础。

2024-11-12 18:17:06 1939

原创 HBase使用create创建表时报错ERROR: KeeperErrorCode = NoNode for /hbase/master

模拟错误场景。正常情况下创建hbase表如下图所示。

2024-11-10 20:44:12 1526

1905电影数据集(27534行)

内容概要: 该数据集包含27534部电影的详细信息,每部电影的信息包括ID、链接、海报链接、标题、上映日期、状态(如是否已上映)、评分(如果有)、类型、主演等。此外,还包含了部分电影的导演、编剧、剧情简介以及改编来源(如果有的话)。值得注意的是,所有列出的电影在数据提供时均未上映,这为预测未来的票房成功、观众反应提供了潜在的研究价值。 适用人群: 电影爱好者:可以提前了解即将上映的电影,并根据个人喜好选择感兴趣的影片。 影视产业从业者:包括制片人、导演、演员等,可以用作行业趋势分析,评估市场对不同类型电影的需求。 研究人员与分析师:可用于进行电影行业的深入研究,比如观众偏好变化、特定类型电影的表现预测等。 数据科学家与机器学习工程师:作为训练推荐系统或预测模型的数据源。 媒体与娱乐公司:用于规划未来的内容策略,制定营销计划。 使用场景及目标: 内容推荐:利用用户的历史观影记录和个人偏好,推荐他们可能感兴趣的即将上映的电影。 市场预测:通过分析不同类型的电影及其主要演员的影响,预测哪些电影可能会受到欢迎。 投资决策支持:帮助投资者评估哪些电影项目值得投资,基于类似电影的历史表现。

2025-01-11

1905电影网中国地区电影数据集(27511行数据)

内容概要: 该数据集包含了27511部电影的详细信息,涵盖了从电影ID到剧情简介等多个维度的数据点。每部电影的信息包括但不限于片长、导演、上映日期、状态(如是否已上映)、评分、类型、主演、其他名称、改编来源、编剧以及简短的剧情描述。 适用人群: 电影爱好者:可以用来查找感兴趣的电影,了解电影详情。 研究人员:可用于进行电影行业趋势分析、观众偏好研究等。 数据科学家:作为机器学习或数据分析项目的一部分,用于训练模型或测试算法。 影评人:提供全面的电影信息,辅助撰写影评或进行比较分析。 制片方:了解市场动态,参考成功案例以指导新项目的开发。 使用场景及目标: 构建推荐系统:基于用户的喜好推荐相似类型的电影。 市场分析:通过分析不同类型电影的受欢迎程度来预测未来趋势。 教育培训:用作影视制作相关课程的教学材料,帮助学生理解电影构成要素。 内容策划:为媒体平台选择合适的内容,满足特定受众的需求。 文化交流:促进不同国家和地区之间的电影文化交流。

2025-01-11

豆瓣图书数据集+数据分析

内容概要 该数据集 douban_books.csv 是豆瓣读书的书籍信息,每一行代表一本书籍的详细资料。数据字段涵盖了书籍的基础信息(如书名、作者、出版社等)、出版详情(如出版年份、页数、定价等)、以及用户评价相关的信息(如评分、评论链接和各星级评价比例)。此外,还包括书籍的封面图片网络地址、国际标准书号(ISBN)、装帧类型等额外信息。 适用人群 研究人员:从事图书馆学、信息科学或社会科学研究的人可以使用此数据集来分析读者行为、书籍流行趋势等。 开发人员与数据科学家:对于正在构建推荐系统或者进行数据分析的人来说,这些数据提供了丰富的变量用于建模和算法训练。 出版业从业者:了解市场对不同类型书籍的接受度,评估竞争对手的产品,规划未来的出版策略。 营销人员:可以通过分析用户评分和评论来制定更有效的营销策略。 普通读者:寻找感兴趣的书籍,参考其他用户的评价做出更好的阅读选择。 使用场景及目标 书籍推荐系统:利用用户评分和其他元数据创建个性化书籍推荐服务。 市场分析:研究特定类型书籍的市场表现,探索不同因素如何影响书籍的成功。 学术研究:为关于文学、文化研究、读者心理学等领域提供

2025-01-09

低代码平台教你两步把SQL直接转换为RESTful API

低代码平台教你两步把SQL直接转换为RESTful API

2024-06-21

Spark-Streaming+HDFS实战

需求说明:从GBIF接口获取数据并处理为HDFS文件并映射为Hive外部表 ## 1. 目标: - 从GBIF(Global Biodiversity Information Facility)接口获取数据。 - 使用Spark Streaming处理数据。 - 将处理后的数据保存到HDFS文件系统。 - 创建Hive外部表,将HDFS文件映射为表。 ## 2. 数据源: - GBIF接口(https://api.gbif.org/v1/dataset)提供了生物多样性相关的数据集。 ## 3. 数据处理流程: - 使用HTTP请求从GBIF接口获取数据集。 - 使用Spark Streaming处理数据集,可以使用httpclient获取数据。 - 对获取的数据进行必要的转换、清洗和处理,以满足需求。 - 将处理后的数据保存到HDFS文件系统。 ## 4. HDFS文件保存: - 使用Spark Streaming将处理后的数据保存到HDFS文件系统。

2023-12-16

Spark-Streaming+Kafka+mysql实战示例

介绍一个使用Spark Streaming和Kafka进行实时数据处理的示例。通过该示例,您将了解到如何使用Spark Streaming和Kafka处理实时数据流,以及如何将处理后的数据保存到MySQL数据库中。示例涵盖了从环境搭建到代码实现的全过程,帮助您快速上手实时数据处理的开发。提供了一个完整的示例,演示了如何使用Spark Streaming和Kafka进行实时数据处理。通过该示例,我们可以学习到如何创建Kafka主题、发送消息到Kafka集群、从Kafka集群消费消息,并将消费到的消息保存到MySQL数据库中。这个示例涵盖了从数据源到数据处理和存储的完整流程,可以帮助你理解和应用实时数据处理的基本概念和技术。

2023-12-12

C语言,大一C语言实验及报告

C语言,大一C语言实验及报告

2023-11-26

程序员考试大纲.zip

程序员考试大纲.zip

2022-05-17

程序员2009-2019真题.zip

程序员2009-2019真题.zip

2022-05-17

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除