python 生成器
概念:
以 list 容器为例,在使用该容器迭代一组数据时,必须事先将所有数据存储到容器中,才能开始迭代;而生成器却不同,它可以实现在迭代的同时生成元素。
也就是说,对于可以用某种算法推算得到的多个数据,生成器并不会一次性生成它们,而是什么时候需要,才什么时候生成。
在Python中,这种一边循环一边计算的机制,称为生成器:generator。
第一种方法:
要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]
改成()
,就创建了一个generator
比如:
g=(x * x for x in range(1, 10))
print(g)
这时会出现:
<generator object <genexpr> at 0x000001F524946510>
我们需要用for循环来输出:
g=(x * x for x in range(1, 10))
for n in g :
print(n)
上面的结果就是:
1
4
9
16
25
36
49
64
81
我们可以利用next()
函数来一个个打印:
g=(x * x for x in range(1, 10))
print(next(g))
print(next(g))
需要几个就输入几个next()
:
1
4
第二种方法
定义一个以 yield
关键字标识返回值的函数;
调用刚刚创建的函数,即可创建一个生成器。
举个例子:0~9的平方
def chengfa() :
for x in range(10) :
yield x*x
for g in chengfa() :
print(g)
由此,我们就成功创建了一个 g
生成器对象。显然,和普通函数不同,chengfa()
函数的返回值用的是 yield
关键字,而不是 return
关键字,此类函数又成为生成器函数。
和 return
相比,yield
除了可以返回相应的值,还有一个更重要的功能,即每当程序执行完该语句时,程序就会暂停执行。不仅如此,即便调用生成器函数,python解释器也不会执行函数中的代码,它只会返回一个生成器(对象)。