pytorch
爬坡少女
加油 学会坚持 不断学习 Never Settle
展开
-
PyTorch (莫烦)中
4.2 RNN循环神经网络让神经网络有了记忆, 对于序列话的数据,循环神经网络能达到更好的效果.几个缺点:[1] 梯度弥散(消失)反向传播时[2] 梯度爆炸(1)LSTM RNN(可以有更好的结果)...原创 2018-07-10 16:00:29 · 1938 阅读 · 1 评论 -
PyTorch动态神经网络(莫烦)上
1.神经网络简述(以图片为例)对于和给定的一张猫的图片,相当于一个激励,在每个神经网络层中有部分的神经元被激活(发),最后会得出一个结果,比如是狗,知道是错的,再反向传(感觉用词不太准确),之前被激发的神经元不会像之前那么活跃,但同时会有新的神经元被激活,其实相当于修改参数,多次重复后,就会得到一个比较完美的结果,识别为猫。2.神经网络:梯度下降(向着梯度降低最快的方向走到梯度最小的地方)优化问题...原创 2018-07-07 11:22:14 · 4107 阅读 · 1 评论