实心多边形重心的计算公式及推导

本文介绍了平面上多边形重心的计算公式,并详细推导了计算过程。通过散度定理,得出横坐标和纵坐标的表达式,进一步得到重心坐标。此外,讨论了该公式与三角形重心的关系,并提出公式可能的三维空间推广问题,欢迎读者探讨。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先上结果:

假设P^0,P^1,...,P^n是某个多边形的顶点且逆时针排列,则

c=\frac{1}{3}\frac{1}{\sum\limits_{i}P^i_y(P^{i-1}_x-P^{i+1}_x)}\left( \sum\limits_{i}P^i_y(P^{i-1}_x-P^{i+1}_x)\left(P^{i-1}_x+P^{i}_x+P^{i+1}_x\right ) , -\sum\limits_{i}P^i_x(P^{i-1}_y-P^{i+1}_y)\left(P^{i-1}_y+P^{i}_y+P^{i+1}_y\right ) \right )

 

推导过程:

 对于平面上一般区域,其重心计算公式为

                                                              

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值